Hostname: page-component-797576ffbb-6mkhv Total loading time: 0 Render date: 2023-12-02T03:44:10.115Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

The increasing challenge of the possible impact of ethnicity on psychopharmacology

Published online by Cambridge University Press:  02 March 2020

Donatella Marazziti*
Dipartimento di Medicina Clinica e Sperimentale, Section of Psychiatry, University of Pisa, Italy University of Unicamillus, Rome, Italy BRF Foundation Lucca, Italy
Federico Mucci
Dipartimento di Medicina Clinica e Sperimentale, Section of Psychiatry, University of Pisa, Italy
Maria T. Avella
Dipartimento di Medicina Clinica e Sperimentale, Section of Psychiatry, University of Pisa, Italy
Laura Palagini
Dipartimento di Medicina Clinica e Sperimentale, Section of Psychiatry, University of Pisa, Italy
Marly Simoncini
Dipartimento di Medicina Clinica e Sperimentale, Section of Psychiatry, University of Pisa, Italy
Liliana Dell’Osso
Dipartimento di Medicina Clinica e Sperimentale, Section of Psychiatry, University of Pisa, Italy
Author for correspondence: Donatella Marazziti, MD, Email:


Ethnic differences may significantly influence the outcome of psychopharmacological treatment, in terms of prescription, adherence, clinical response, emergence of side effects, as well as pharmacokinetics and pharmacodynamics. The purpose of this review was to explore the available literature in order to provide general suggestions to help clinicians in choosing the best therapeutic option for patients, taking into account ethnicity. Although findings are sometimes controversial, the overall published studies suggest that ethnicities other than Caucasians tend to show a lower response to antidepressants and a reduced compliance. Africans tend to be more prescribed with antipsychotics, probably due to cultural stereotypes, except with clozapine, probably for their chronic benign neutropenia. Asians usually require less antipsychotic dosages than Caucasians. The differential response and side effect profile of antidepressants and antipsychotics have been related to individual intrinsic factors, to genetic make-up, but also to cultural and contextual variables. Interestingly, albeit limited data suggest ethnic-related genetic heterogeneity at the level of the serotonin transporters, the cytochromes and some neuroreceptors. Taken together, no conclusive findings are available about the role and impact of ethnicity in psychopharmacology. One of the main problems is that the majority of the studies in psychopharmacology have been conducted on Caucasians, so that there is an urgent need to have data in other populations. Furthermore, in the era of precision medicine, the role of ethnicity may be also supported by genetic analysis.

© The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Lawson, WB. Racial and ethnic factors in psychiatric research. Hosp Commun Psychiatry. 1986;37(1):5054. doi: 10.1176/ps.37.1.50Google ScholarPubMed
Pi, EH, Simpson, GM. Cross-cultural psychopharmacology: a current clinical perspective. Psychiatr Serv. 2005;56(1):3133. doi: 10.1176/ ScholarPubMed
Corin, E, Bibeau, G. H. B. M. Murphy (1915–1987): a key figure in transcultural psychiatry. Cult Med Psychiatry. 1988;12(3):397415.CrossRefGoogle Scholar
Kirmayer, LJ, Narasiah, L, Munoz, M, et al. Common mental health problems in immigrants and refugees: general approach in primary care. CMAJ. 2011;183(12):E959967. doi: 10.1503/cmaj.090292CrossRefGoogle ScholarPubMed
Jensen, NK, Norredam, M, Priebe, S, Krasnik, A. How do general practitioners experience providing care to refugees with mental health problems? A qualitative study from Denmark. BMC Fam Pract. 2013;14:17. doi: 10.1186/1471-2296-14-17CrossRefGoogle Scholar
American Psychiatry Association. Resource document on cultural psychiatry as a specific field of study relevant to the assessment and care of all patients. 2013 [Accessed: September 7, 2019]Google Scholar
Bass, JK, Bolton, PA, Murray, LK. Do not forget culture when studying mental health. Lancet. 2007;370(9591):918919. doi: 10.1016/S0140-6736(07)61426-3CrossRefGoogle ScholarPubMed
Brakoulias, V, Starcevic, V, Belloch, A, et al. International prescribing practices in obsessive-compulsive disorder (OCD). Hum Psychopharmacol. 2016;31(4):319324. doi: 10.1002/hup.2541CrossRefGoogle Scholar
Marazziti, D, Stahl, SM, Simoncini, M, et al. Psychopharmacology and ethnicity: a comparative study on Senegalese and Italian men. World J Biol Psychiatry. 2019:18. doi: 10.1080/15622975.2019.1583373Google ScholarPubMed
Smedley, BD, Stith, AY, Nelson, AR. Unequal Treatment: Confronting Racial and Ethnic Disparities in Health Care. Washington, DC: National Academy Press; 2003.Google Scholar
Wilson, JF, Weale, ME, Smith, AC, et al. Population genetic structure of variable drug response. Nat Genet. 2001;29(3):265269. doi: 10.1038/ng761CrossRefGoogle ScholarPubMed
Evans, WE, McLeod, HL. Pharmacogenomics-drug disposition, drug targets, and side effects. N Engl J Med. 2003;348(6):538549. doi: 10.1056/NEJMra020526CrossRefGoogle ScholarPubMed
Doyle, JM. What race and ethnicity measure in pharmacologic research. J Clin Pharmacol. 2006;46(4):401404. doi: 10.1177/0091270005282633CrossRefGoogle ScholarPubMed
Goodman, AH. Why genes don’t count (for racial differences in health). Am J Public Health. 2000;90(11):16991702. doi: 10.2105/ajph.90.11.1699Google Scholar
Bamshad, M, Wooding, S, Salisbury, BA, Stephens, JC. Deconstructing the relationship between genetics and race. Nat Rev Genet. 2004;5(8):598609. doi: 10.1038/nrg1401CrossRefGoogle Scholar
Burroughs, VJ, Maxey, RW, Levy, RA. Racial and ethnic differences in response to medicines: towards individualized pharmaceutical treatment. J Natl Med Assoc. 2002;94(Suppl 10):126.Google ScholarPubMed
Mallinger, JB, Lamberti, JS. Psychiatrists’ attitudes toward and awareness about racial disparities in mental health care. Psychiatr Serv. 2010;61(2):173179. doi: 10.1176/ps.2010.61.2.173CrossRefGoogle ScholarPubMed
Miskimen, T, Marin, H, Escobar, J. Psychopharmacological research ethics: special issues affecting US ethnic minorities. Psychopharmacology (Berl). 2003;171(1):98104. doi: 10.1007/s00213-003-1630-8CrossRefGoogle ScholarPubMed
Moher, D, Altman, DG, Liberati, A, Tetzlaff, J. PRISMA statement. Epidemiology. 2011;22(1):128. doi: 10.1097/EDE.0b013e3181fe7825CrossRefGoogle ScholarPubMed
Fearon, P, Kirkbride, JB, Morgan, C, et al. Incidence of schizophrenia and other psychoses in ethnic minority groups: results from the MRC AESOP Study. Psychol Med. 2006;36(11):15411550. doi: 10.1017/S0033291706008774CrossRefGoogle ScholarPubMed
Selten, JP, Cantor-Graae, E, Kahn, RS. Migration and schizophrenia. Curr Opin Psychiatry. 2007;20(2):111115. doi: 10.1097/YCO.0b013e328017f68eCrossRefGoogle Scholar
Cook, B, Creedon, T, Wang, Y, et al. Examining racial/ethnic differences in patterns of benzodiazepine prescription and misuse. Drug Alcohol Depend. 2018;187:2934. doi: 10.1016/j.drugalcdep.2018.02.011CrossRefGoogle ScholarPubMed
Chen, J, Rizzo, JA. Racial and ethnic disparities in antidepressant drug use. J Ment Health Policy Econ. 2008;11(4):155165.Google ScholarPubMed
Olfson, M, Marcus, SC. National patterns in antidepressant medication treatment. Arch Gen Psychiatry. 2009;66(8):848856. doi: 10.1001/archgenpsychiatry.2009.81CrossRefGoogle ScholarPubMed
Sclar, DA, Robison, LM, Schmidt, JM, Bowen, KA, Castillo, LV, Oganov, AM. Diagnosis of depression and use of antidepressant pharmacotherapy among adults in the United States: does a disparity persist by ethnicity/race? Clin Drug Investig. 2012;32(2):139144. doi: 10.2165/11598950-000000000-00000CrossRefGoogle ScholarPubMed
Rossom, RC, Shortreed, S, Coleman, KJ, et al. Antidepressant adherence across diverse populations and healthcare settings. Depress Anxiety. 2016;33(8):765774. doi: 10.1002/da.22532CrossRefGoogle ScholarPubMed
Walkup, JT, McAlpine, DD, Olfson, M, Labay, LE, Boyer, C, Hansell, S. Patients with schizophrenia at risk for excessive antipsychotic dosing. J Clin Psychiatry. 2000;61(5):344348. doi: 10.4088/jcp.v61n0504CrossRefGoogle ScholarPubMed
Mallinger, JB, Fisher, SG, Brown, T, Lamberti, JS. Racial disparities in the use of second-generation antipsychotics for the treatment of schizophrenia. Psychiatr Serv. 2006;57(1):133136. doi: 10.1176/ ScholarPubMed
Kelly, DL, Kreyenbuhl, J, Dixon, L, Love, RC, Medoff, D, Conley, RR. Clozapine underutilization and discontinuation in African Americans due to leucopenia. Schizophr Bull. 2007;33(5):12211224. doi: 10.1093/schbul/sbl068CrossRefGoogle ScholarPubMed
Nielsen, J, Young, C, Ifteni, P, et al. Worldwide differences in regulations of clozapine use. CNS Drugs. 2016; 30(2):149161. doi: 10.1007/s40263-016-0311-1CrossRefGoogle ScholarPubMed
van Ryn, M, Burke, J. The effect of patient race and socio-economic status on physicians’ perceptions of patients. Soc Sci Med. 2000; 50(6):813828. doi: 10.1016/s0277-9536(99)00338-xGoogle ScholarPubMed
Birchwood, M, Cochrane, R, Macmillan, F, Copestake, S, Kucharska, J, Carriss, M. The influence of ethnicity and family structure on relapse in first-episode schizophrenia. A comparison of Asian, Afro-Caribbean, and white patients. Br J Psychiatry. 1992;161:783790. doi: 10.1192/bjp.161.6.783CrossRefGoogle ScholarPubMed
Cook, BL, Carson, NJ, Kafali, EN, et al. Examining psychotropic medication use among youth in the U. S. by race/ethnicity and psychological impairment. Gen Hosp Psychiatry. 2017;45:3239. doi: 10.1016/j.genhosppsych.2016.12.004CrossRefGoogle ScholarPubMed
Wagner, GJ, Maguen, S, Rabkin, JG. Ethnic differences in response to fluoxetine in a controlled trial with depressed HIV-positive patients. Psychiatr Serv. 1998;49(2):239240. doi: 10.1176/ps.49.2.239CrossRefGoogle Scholar
Murphy, E, Hou, L, Maher, BS, et al. Race, genetic ancestry and response to antidepressant treatment for major depression. Neuropsychopharmacology. 2013;38(13):25982606. doi: 10.1038/npp.2013.166CrossRefGoogle ScholarPubMed
Okuma, T. Differential sensitivity to the effects of psychotropic drugs: psychotics vs normals; Asian vs Western populations. Folia Psychiatr Neurol Jpn. 1981;35(1):7987.Google ScholarPubMed
Sramek, JJ, Pi, EH. Ethnicity and antidepressant response. Mt Sinai J Med. 1996;63(5-6):320325.Google ScholarPubMed
Varner, RV, Ruiz, P, Small, DR. Black and white patients response to antidepressant treatment for major depression. Psychiatr Q. 1998;69(2):117125. doi: 10.1023/a:1024762503100CrossRefGoogle ScholarPubMed
Lesser, IM, Myers, HF, Lin, KM, et al. Ethnic differences in antidepressant response: a prospective multi-site clinical trial. Depress Anxiety. 2010;27(1):5662. doi: 10.1002/da.20619CrossRefGoogle ScholarPubMed
Howland, RH, Wilson, MG, Kornstein, SG, et al. Factors predicting reduced antidepressant response: experience with the SNRI duloxetine in patients with major depression. Ann Clin Psychiatry. 2008;20(4):209218. doi: 10.1080/10401230802437639CrossRefGoogle ScholarPubMed
Lesser, IM, Smith, MW, Wohl, M, Mena, RN, Mehringer, CM, Lin, KM. Brain imaging, antidepressants, and ethnicity: preliminary observations. Psychopharmacol Bull. 1996;32(2):235242.Google ScholarPubMed
Brown, C, Schulberg, HC, Sacco, D, Perel, JM, Houck, PR. Effectiveness of treatments for major depression in primary medical care practice: a post hoc analysis of outcomes for African American and white patients. J Affect Disord. 1999;53(2):185192. doi: 10.1016/s0165-0327(98)00120-7CrossRefGoogle ScholarPubMed
Matsuda, KT, Cho, MC, Lin, KM, Smith, MW, Young, AS, Adams, JA. Clozapine dosage, serum levels, efficacy, and side-effect profiles: a comparison of Korean–American and Caucasian patients. Psychopharmacol Bull. 1996;32(2):253257.Google ScholarPubMed
Ng, CH, Chong, SA, Lambert, T, et al. An inter-ethnic comparison study of clozapine dosage, clinical response and plasma levels. Int Clin Psychopharmacol. 2005;20(3):163168.CrossRefGoogle ScholarPubMed
Chan, LF, Zai, C, Monda, M, et al. Role of ethnicity in antipsychotic-induced weight gain and tardive dyskinesia: genes or environment? Pharmacogenomics. 2013;14(11):12731281. doi: 10.2217/pgs.13.127CrossRefGoogle ScholarPubMed
Ananth, J, Kolli, S, Gunatilake, S, Brown, S. Atypical antipsychotic drugs, diabetes and ethnicity. Expert Opin Drug Saf. 2005;4(6):11111124. doi: 10.1517/14740338.4.6.1111CrossRefGoogle ScholarPubMed
Citrome, LL. The increase in risk of diabetes mellitus from exposure to second-generation antipsychotic agents. Drugs Today (Barc). 2004;40(5):445464.CrossRefGoogle ScholarPubMed
Holt, RI, Peveler, RC. Antipsychotic drugs and diabetes—an application of the Austin Bradford Hill criteria. Diabetologia. 2006;49(7):14671476. doi: 10.1007/s00125-006-0279-3CrossRefGoogle ScholarPubMed
Poolsup, N, Li Wan Po, A, Knight, TL. Pharmacogenetics and psychopharmacotherapy. J Clin Pharm Ther. 2000;25(3):197220.CrossRefGoogle ScholarPubMed
Kumana, CR, Lauder, IJ, Chan, M, Ko, W, Lin, HJ. Differences in diazepam pharmacokinetics in Chinese and white Caucasians—relation to body lipid stores. Eur J Clin Pharmacol. 1987;32(2):211215. doi: 10.1007/bf00542199CrossRefGoogle ScholarPubMed
Gonzalez Arnold, J, Salcedo, S, Ketter, TA, et al. An exploratory study of responses to low-dose lithium in African Americans and Hispanics. J Affect Disord. 2015;178:224228. doi: 10.1016/j.jad.2015.02.035CrossRefGoogle ScholarPubMed
Wing, YK, Chan, E, Chan, K, Lee, S, Shek, CC. Lithium pharmacokinetics in Chinese manic-depressive patients. J Clin Psychopharmacol. 1997;17(3):179184. doi: 10.1097/00004714-199706000-00007CrossRefGoogle ScholarPubMed
Lee, CF, Yang, YY, Hu, OY. Single dose pharmacokinetic study of lithium in Taiwanese/Chinese bipolar patients. Aust N Z J Psychiatry. 1998;32(1):133136. doi: 10.3109/00048679809062720CrossRefGoogle ScholarPubMed
Shelley, RK. Are there ethnic differences in lithium pharmacokinetics and side-effects? Int Clin Psychopharmacol. 1987;2(4):337342.CrossRefGoogle ScholarPubMed
Strickland, TL, Lin, KM, Fu, P, Anderson, D, Zheng, Y. Comparison of lithium ratio between African-American and Caucasian bipolar patients. Biol Psychiatry. 1995;37(5):325330. doi: 10.1016/0006-3223(94)00133-NCrossRefGoogle ScholarPubMed
Okpaku, S, Frazer, A, Mendels, J. A pilot study of racial differences in erythrocyte lithium transport. Am J Psychiatry. 1980;137(1):120121. doi: 10.1176/ajp.137.1.120Google ScholarPubMed
Elizur, A, Shopsin, B, Gershon, S, Ehlenberger, A. Intra:extracellular lithium ratios and clinical course in affective states. Clin Pharmacol Ther. 1972;13(6):947953. doi: 10.1002/cpt1972136947CrossRefGoogle ScholarPubMed
Hashemi, J, Kheirabadi, G, Movahedian, A. Lithium ratio in bipolar patients in Isfahan. J Res Med Sci. 2006;11:257262.Google Scholar
Grover, S, Kukreti, R. HLA alleles and hypersensitivity to carbamazepine: an updated systematic review with meta-analysis. Pharmacogenet Genom. 2014;24(2):94112. doi: 10.1097/FPC.0000000000000021CrossRefGoogle ScholarPubMed
Nakajima, Y, Saito, Y, Shiseki, K, et al. Haplotype structures of EPHX1 and their effects on the metabolism of carbamazepine-10,11-epoxide in Japanese epileptic patients. Eur J Clin Pharmacol. 2005;61(1):2534. doi: 10.1007/s00228-004-0878-1CrossRefGoogle Scholar
Douglas-Hall, P, Dzahini, O, Gaughran, F, Bile, A, Taylor, D. Variation in dose and plasma level of lamotrigine in patients discharged from a mental health trust. Ther Adv Psychopharmacol. 2017;7(1):1724. doi: 10.1177/2045125316672573CrossRefGoogle ScholarPubMed
Diaz, E, Woods, SW, Rosenheck, RA. Effects of ethnicity on psychotropic medications adherence. Community Ment Health J. 2005;41(5):521537. doi: 10.1007/s10597-005-6359-xCrossRefGoogle ScholarPubMed
Valenstein, M, Blow, FC, Copeland, LA, et al. Poor antipsychotic adherence among patients with schizophrenia: medication and patient factors. Schizophr Bull. 2004;30(2):255264. doi: 10.1093/oxfordjournals.schbul.a007076CrossRefGoogle ScholarPubMed
Bogner, HR, Lin, JY, Morales, KH. Patterns of early adherence to the antidepressant citalopram among older primary care patients: the prospect study. Int J Psychiatry Med. 2006;36(1):103119. doi: 10.2190/DJH3-Y4R0-R3KG-JYCCCrossRefGoogle ScholarPubMed
Danielson, PB. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab. 2002;3(6):561597.CrossRefGoogle ScholarPubMed
Zhou, SF. Polymorphism of human cytochrome P450 2D6 and its clinical significance: part I. Clin Pharmacokinet. 2009; 48(11):689723. doi: 10.2165/11318030-000000000-00000CrossRefGoogle ScholarPubMed
Parker, G, Rowe, M, Mehta, F, Kumar, S. Will a new genotyping test help the clinician predict response to antidepressant drugs? Australas Psychiatry. 2010;18(5):413416. doi: 10.3109/10398562.2010.498516CrossRefGoogle Scholar
McGraw, J, Waller, D. Cytochrome P450 variations in different ethnic populations. Expert Opin Drug Metab Toxicol. 2012;8(3):371382. doi: 10.1517/17425255.2012.657626CrossRefGoogle ScholarPubMed
Eichelbaum, M, Baur, MP, Dengler, HJ, et al. Chromosomal assignment of human cytochrome P-450 (debrisoquine/sparteine type) to chromosome 22. Br J Clin Pharmacol. 1987;23(4):455458. doi: 10.1111/j.1365-2125.1987.tb03075.xCrossRefGoogle Scholar
Xie, HG, Kim, RB, Wood, AJ, Stein, CM. Molecular basis of ethnic differences in drug disposition and response. Annu Rev Pharmacol Toxicol. 2001;41:815850. doi: 10.1146/annurev.pharmtox.41.1.815CrossRefGoogle ScholarPubMed
Sistonen, J, Fuselli, S, Palo, JU, Chauhan, N, Padh, H, Sajantila, A. Pharmacogenetic variation at CYP2C9, CYP2C19, and CYP2D6 at global and microgeographic scales. Pharmacogenet Genom. 2009;19(2):170179. doi: 10.1097/FPC.0b013e32831ebb30CrossRefGoogle ScholarPubMed
Mancama, D, Kerwin, RW. Role of pharmacogenomics in individualising treatment with SSRIs. CNS Drugs. 2003;17(3):143151. doi: 10.2165/00023210-200317030-00001CrossRefGoogle ScholarPubMed
Romkes, M, Faletto, MB, Blaisdell, JA, Raucy, JL, Goldstein, JA. Cloning and expression of complementary DNAs for multiple members of the human cytochrome P450IIC subfamily. Biochemistry. 1991;30(13):32473255. doi: 10.1021/bi00227a012CrossRefGoogle ScholarPubMed
Lee, CR, Goldstein, JA, Pieper, JA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics. 2002;12(3):251263.CrossRefGoogle ScholarPubMed
Scordo, MG, Caputi, AP, D’Arrigo, C, Fava, G, Spina, E. Allele and genotype frequencies of CYP2C9, CYP2C19 and CYP2D6 in an Italian population. Pharmacol Res. 2004;50(2):195200. doi: 10.1016/j.phrs.2004.01.004CrossRefGoogle Scholar
Garcia-Martin, E, Martinez, C, Ladero, JM, Agundez, JA. Interethnic and intraethnic variability of CYP2C8 and CYP2C9 polymorphisms in healthy individuals. Mol Diagn Ther. 2006;10(1):2940. doi: 10.1007/BF03256440CrossRefGoogle ScholarPubMed
Schwarz, UI. Clinical relevance of genetic polymorphisms in the human CYP2C9 gene. Eur J Clin Invest. 2003;33 Suppl 2:2330. doi: 10.1046/j.1365-2362.33.s2.6.xCrossRefGoogle ScholarPubMed
Grasmader, K, Verwohlt, PL, Rietschel, M, et al. Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur J Clin Pharmacol. 2004;60(5):329336. doi: 10.1007/s00228-004-0766-8CrossRefGoogle Scholar
Sim, SC, Ingelman-Sundberg, M. Update on allele nomenclature for human cytochromes P450 and the Human Cytochrome P450 Allele (CYP-allele) Nomenclature Database. Methods Mol Biol. 2013;987:251259. doi: 10.1007/978-1-62703-321-3_21CrossRefGoogle ScholarPubMed
Desta, Z, Zhao, X, Shin, JG, Flockhart, DA. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet. 2002;41(12):913958. doi: 10.2165/00003088-200241120-00002CrossRefGoogle ScholarPubMed
Miura, J, Obua, C, Abbo, C, Kaneko, S, Tateishi, T. Cytochrome P450 2C19 genetic polymorphisms in Ugandans. Eur J Clin Pharmacol. 2009;65(3):319320. doi: 10.1007/s00228-008-0583-6CrossRefGoogle ScholarPubMed
Pedersen, RS, Brasch-Andersen, C, Sim, SC, et al. Linkage disequilibrium between the CYP2C19*17 allele and wildtype CYP2C8 and CYP2C9 alleles: identification of CYP2C haplotypes in healthy Nordic populations. Eur J Clin Pharmacol. 2010;66(12):11991205. doi: 10.1007/s00228-010-0864-8CrossRefGoogle ScholarPubMed
Koran, LM, Cain, JW, Dominguez, RA, Rush, AJ, Thiemann, S. Are fluoxetine plasma levels related to outcome in obsessive-compulsive disorder? Am J Psychiatry. 1996;153(11):14501454. doi: 10.1176/ajp.153.11.1450Google ScholarPubMed
Fabbri, C, Tansey, KE, Perlis, RH, et al. Effect of cytochrome CYP2C19 metabolizing activity on antidepressant response and side effects: meta-analysis of data from genome-wide association studies. Eur Neuropsychopharmacol. 2018;28(8):945954. doi: 10.1016/j.euroneuro.2018.05.009CrossRefGoogle ScholarPubMed
Jaiswal, AK, Nebert, DW, McBride, OW, Gonzalez, FJ. Human P(3)450: cDNA and complete protein sequence, repetitive Alu sequences in the 3′ nontranslated region, and localization of gene to chromosome 15. J Exp Pathol. 1987;3(1):117.Google Scholar
Al-Ahmad, MM, Amir, N, Dhanasekaran, S, et al. Genetic polymorphisms of cytochrome P450-1A2 (CYP1A2) among Emiratis. PLoS One. 2017;12(9):e0183424. doi: 10.1371/journal.pone.0183424CrossRefGoogle ScholarPubMed
Ou-Yang, DS, Huang, SL, Wang, W, et al. Phenotypic polymorphism and gender-related differences of CYP1A2 activity in a Chinese population. Br J Clin Pharmacol. 2000;49(2):145151. doi: 10.1046/j.1365-2125.2000.00128.xCrossRefGoogle ScholarPubMed
Ghotbi, R, Christensen, M, Roh, HK, Ingelman-Sundberg, M, Aklillu, E, Bertilsson, L. Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype-phenotype relationship in Swedes and Koreans. Eur J Clin Pharmacol. 2007;63(6):537546. doi: 10.1007/s00228-007-0288-2CrossRefGoogle ScholarPubMed
Inoue, K, Inazawa, J, Nakagawa, H, et al. Assignment of the human cytochrome P-450 nifedipine oxidase gene (CYP3A4) to chromosome 7 at band q22.1 by fluorescence in situ hybridization. Jpn J Hum Genet. 1992;37(2):133138. doi: 10.1007/BF01899734CrossRefGoogle ScholarPubMed
Dai, D, Tang, J, Rose, R, et al. Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. J Pharmacol Exp Ther. 2001;299(3):825831.Google ScholarPubMed
Lakhman, SS, Ma, Q, Morse, GD. Pharmacogenomics of CYP3A: considerations for HIV treatment. Pharmacogenomics. 2009;10(8):13231339. doi: 10.2217/pgs.09.53CrossRefGoogle ScholarPubMed
Westlind-Johnsson, A, Hermann, R, Huennemeyer, A, et al. Identification and characterization of CYP3A4*20, a novel rare CYP3A4 allele without functional activity. Clin Pharmacol Ther. 2006;79(4):339349. doi: 10.1016/j.clpt.2005.11.015CrossRefGoogle ScholarPubMed
Hendershot, PE, Fleishaker, JC, Lin, KM, Nuccio, ID, Poland, RE. Pharmacokinetics of reboxetine in healthy volunteers with different ethnic descents. Psychopharmacology (Berl). 2001;155(2):148153. doi: 10.1007/s002130100696CrossRefGoogle ScholarPubMed
Nakamura, M, Ueno, S, Sano, A, Tanabe, H. The human serotonin transporter gene linked polymorphism (5-HTTLPR) shows ten novel allelic variants. Mol Psychiatry. 2000;5(1):3238.CrossRefGoogle ScholarPubMed
MacKenzie, A, Quinn, J. A serotonin transporter gene intron 2 polymorphic region, correlated with affective disorders, has allele-dependent differential enhancer-like properties in the mouse embryo. Proc Natl Acad Sci USA. 1999;96(26):1525115255. doi: 10.1073/pnas.96.26.15251CrossRefGoogle ScholarPubMed
Zanardi, R, Benedetti, F, Di Bella, D, Catalano, M, Smeraldi, E. Efficacy of paroxetine in depression is influenced by a functional polymorphism within the promoter of the serotonin transporter gene. J Clin Psychopharmacol. 2000;20(1):105107. doi: 10.1097/00004714-200002000-00021CrossRefGoogle ScholarPubMed
Pollock, BG, Ferrell, RE, Mulsant, BH, et al. Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression. Neuropsychopharmacology. 2000;23(5):587590. doi: 10.1016/S0893-133X(00)00132-9CrossRefGoogle ScholarPubMed
Porcelli, S, Fabbri, C, Serretti, A. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with antidepressant efficacy. Eur Neuropsychopharmacol. 2012;22(4):239258. doi: 10.1016/j.euroneuro.2011.10.003CrossRefGoogle ScholarPubMed
Bousman, CA, Sarris, J, Won, ES, et al. Escitalopram efficacy in depression: a cross-ethnicity examination of the serotonin transporter promoter polymorphism. J Clin Psychopharmacol. 2014;34(5):645648. doi: 10.1097/JCP.0000000000000165CrossRefGoogle ScholarPubMed
Myung, W, Kim, J, Lim, SW, et al. A genome-wide association study of antidepressant response in Koreans. Transl Psychiatry. 2015;5:e633. doi: 10.1038/tp.2015.127CrossRefGoogle ScholarPubMed
Yoshida, K, Ito, K, Sato, K, et al. Influence of the serotonin transporter gene-linked polymorphic region on the antidepressant response to fluvoxamine in Japanese depressed patients. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(2):383386. doi: 10.1016/s0278-5846(01)00287-1CrossRefGoogle ScholarPubMed
Smeraldi, E, Zanardi, R, Benedetti, F, Di Bella, D, Perez, J, Catalano, M. Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine. Mol Psychiatry. 1998;3(6):508511.CrossRefGoogle ScholarPubMed
Hu, XZ, Rush, AJ, Charney, D, et al. Association between a functional serotonin transporter promoter polymorphism and citalopram treatment in adult outpatients with major depression. Arch Gen Psychiatry. 2007;64(7):783792. doi: 10.1001/archpsyc.64.7.783CrossRefGoogle ScholarPubMed
Popp, J, Leucht, S, Heres, S, Steimer, W. Serotonin transporter polymorphisms and side effects in antidepressant therapy—a pilot study. Pharmacogenomics. 2006;7(2):159166. doi: 10.2217/14622416.7.2.159CrossRefGoogle ScholarPubMed
Williams, RB, Marchuk, DA, Gadde, KM, et al. Serotonin-related gene polymorphisms and central nervous system serotonin function. Neuropsychopharmacology. 2003;28(3):533541. doi: 10.1038/sj.npp.1300054CrossRefGoogle ScholarPubMed
Gelernter, J, Cubells, JF, Kidd, JR, Pakstis, AJ, Kidd, KK. Population studies of polymorphisms of the serotonin transporter protein gene. Am J Med Genet. 1999;88(1):6166.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Binder, EB, Holsboer, F. Pharmacogenomics and antidepressant drugs. Ann Med. 2006;38(2):8294. doi: 10.1080/07853890600551045CrossRefGoogle ScholarPubMed
Perlis, RH, Mischoulon, D, Smoller, JW, et al. Serotonin transporter polymorphisms and adverse effects with fluoxetine treatment. Biol Psychiatry. 2003;54(9):879883. doi: 10.1016/s0006-3223(03)00424-4CrossRefGoogle ScholarPubMed
Maron, E, Tammiste, A, Kallassalu, K, et al. Serotonin transporter promoter region polymorphisms do not influence treatment response to escitalopram in patients with major depression. Eur Neuropsychopharmacol. 2009;19(6):451456. doi: 10.1016/j.euroneuro.2009.01.010CrossRefGoogle Scholar
Arranz, MJ, Rivera, M, Munro, JC. Pharmacogenetics of response to antipsychotics in patients with schizophrenia. CNS Drugs. 2011;25(11):933969. doi: 10.2165/11595380-000000000-00000CrossRefGoogle ScholarPubMed
Wiers, CE, Towb, PC, Hodgkinson, CA, et al. Association of genetic ancestry with striatal dopamine D2/D3 receptor availability. Mol Psychiatry. 2018;23 (8):17111716. doi: 10.1038/mp.2017.208. Epub 2017 Nov 7.CrossRefGoogle ScholarPubMed
Zai, CC, Romano-Silva, MA, Hwang, R, et al. Genetic study of eight AKT1 gene polymorphisms and their interaction with DRD2 gene polymorphisms in tardive dyskinesia. Schizophr Res. 2008;106(2–3):248252.CrossRefGoogle ScholarPubMed
Jauhar, S, McCutcheon, R, Borgan, F, et al. The relationship between cortical glutamate and striatal dopamine in first-episode psychosis: a cross-sectional multimodal PET and magnetic resonance spectroscopy imaging study. Lancet Psychiatry. 2018;5(10):816823. doi: 10.1016/S2215-0366(18)30268-2CrossRefGoogle ScholarPubMed
Borgan, FR, Jauhar, S, McCutcheon, RA, et al. Glutamate levels in the anterior cingulate cortex in un-medicated first episode psychosis: a proton magnetic resonance spectroscopy study. Sci Rep. 2019;9(1):8685. doi: 10.1038/s41598-019-45018-0CrossRefGoogle ScholarPubMed
Yu, H, Yan, H, Wang, L, et al. Five novel loci associated with antipsychotic treatment response in patients with schizophrenia: a genome-wide association study. Lancet Psychiatry. 2018;5(4):327338. doi: 10.1016/S2215-0366(18)30049-XCrossRefGoogle ScholarPubMed
Derenne, JL, Baldessarini, RJ. Clozapine toxicity associated with smoking cessation: case report. Am J Ther. 2005;12(5):469471.CrossRefGoogle ScholarPubMed
Marazziti, D, Palego, L, Betti, L, et al. Effect of valproate and antidepressant drugs on clozapine metabolism in patients with psychotic mood disorders. Ther Drug Monit. 2018;40(4):443451. doi: 10.1097/FTD.0000000000000513CrossRefGoogle ScholarPubMed
Jefferson, JW. Drug and diet interactions: avoiding therapeutic paralysis. J Clin Psychiatry. 1998;59(Suppl 16):3139; discussion 40–32.Google ScholarPubMed
Bailey, DG, Malcolm, J, Arnold, O, Spence, JD. Grapefruit juice-drug interactions. Br J Clin Pharmacol. 1998;46(2):101110. doi: 10.1046/j.1365-2125.1998.00764.xCrossRefGoogle ScholarPubMed
Zhou, HH, Adedoyin, A, Wilkinson, GR. Differences in plasma binding of drugs between Caucasians and Chinese subjects. Clin Pharmacol Ther. 1990;48(1):1017. doi: 10.1038/clpt.1990.111CrossRefGoogle ScholarPubMed