Skip to main content Accessibility help
×
Home

89 A Novel, Modified-Release Drug Delivery Technology Containing Amphetamine-Ion Exchange Complexes

  • Barry K. Herman (a1), Thomas R. King (a1), Judith C. Kando (a1) and Antonio Pardo (a1)

Abstract

The proprietary immediate and extended drug delivery technology LiquiXR™ utilizes an ion-exchange resin that complexes with amphetamine or any other active moiety that can be protonated and is water-soluble. The active drug product forms a complex with ion-exchange polymers contained in the resin, which is then formed into micron-sized particles. Some of these particles are coated with an aqueous, pH-independent polymer designed to provide immediate or sustained release of active drug product. The polymer coating applied to the ion-exchange resin particles is of varying thickness, allowing for programmed, extended release of active drug product. Solid, coating-free particles provide for immediate release of active drug product.

The micron-sized particles are formulated into an appropriate dosage form (solid or chewable tablet, liquid suspension, orally disintegrating tablet, film, or capsules). Active drug product is subsequently released from the dosage form in millions of particles, with the release driven by a combination of ion exchange and diffusion. After drug release, the ion-exchange resin is excreted in the feces.

The release characteristics of LiquiXR™ are programmable and allow for a customized, sustained release of active drug product for up to 24hours post-dose. Mechanistically, drug particles enter the gastrointestinal tract. As positively-charged ions from gastrointestinal (GI) fluids diffuse across the coating, ionically-charged drug product diffuses through the coating and into the GI fluids for absorption. As the coating is of variable thickness, some drug product takes longer to diffuse and absorb, providing for the programmable delayed drug release characteristic.

The LiquiXR™ drug delivery technology is utilized in Dyanavel® XR (amphetamine extended-release oral suspension; AMPH EROS), which is indicated for the treatment of attention-deficit hyperactivity disorder. It comprises 2.5mg/mL amphetamine base complexed with LiquiXR technology to provide an immediate release component followed by an extended-release profile. The efficacy of AMPH EROS was established in children ages 6 to 12 years in a Phase 3, placebo-controlled laboratory classroom study. In that study, attention-deficit/hyperactivity disorder (ADHD) symptoms in children on an individually optimized dose of amphetamine (range 10–20mg/day) were statistically significantly improved compared with symptoms in children treated with placebo. For children treated with AMPH EROS, onset of effect was demonstrated at 1hour after dosing, and efficacy was observed through 13hours post-dose. The effect size was comparable to effect sizes demonstrated for other psychostimulants tested in studies using a similar design. The efficacy data reported for AMPH EROS provides an excellent example of the potential utility and clinical application for other active drug products requiring an immediate release and extended release profile.

Funding Acknowledgements: This work was funded by Tris Pharma, Inc.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      89 A Novel, Modified-Release Drug Delivery Technology Containing Amphetamine-Ion Exchange Complexes
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      89 A Novel, Modified-Release Drug Delivery Technology Containing Amphetamine-Ion Exchange Complexes
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      89 A Novel, Modified-Release Drug Delivery Technology Containing Amphetamine-Ion Exchange Complexes
      Available formats
      ×

Copyright

89 A Novel, Modified-Release Drug Delivery Technology Containing Amphetamine-Ion Exchange Complexes

  • Barry K. Herman (a1), Thomas R. King (a1), Judith C. Kando (a1) and Antonio Pardo (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed