Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-30T15:25:49.284Z Has data issue: false hasContentIssue false

Physical-Chemical Properties and Engineering Performance of Clays

Published online by Cambridge University Press:  01 January 2024

Richard C. Mielenz
Affiliation:
Engineering Laboratories, U. S. Bureau of Reclamation, Denver, Colorado, USA
Myrle E. King
Affiliation:
Engineering Laboratories, U. S. Bureau of Reclamation, Denver, Colorado, USA

Abstract

Fabric (texture and structure) and minpralogic composition determine the response of clays and shales to events occurrins during construction and operation of engineering works. A new system of classification of the fabric of earth materials is proposed. Characteristic minpralogic composition of clays and shales, especially in the western United States, is described. Fabric and composition are correlated with soil mechanics properties and engineering performance. Needed research on clays and shales as a basis for design, construction, and maintenance of engineering structures is emphasized.

Type
Part V—Clay Technology in Soil Mechanics
Copyright
© Clay Minerals Society 1952

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anonymous, , Collapsed Alexander Da., v. notable structure Engineering News-Record 1930 104 703.Google Scholar
Anonymous, , Hydraulic-filled dam of fine volcanic ash fails disastrously Engineering-News Record 1930 104 809871.Google Scholar
Anonymous, , A study of methods used in measurement and analysis of settlement loads in streams Kept. 4, Joint program of the Tennessee Valley Authority, Corps of Engineers, Dept. Agriculture, Geol. Survey, Bur. Reclamation, Indian Service, and Iowa Inst. Hydraulic Res., Univ. Iowa 1941.Google Scholar
Anonymous, , Diagnosis and improvement of saline and alkali soils U. S. Dept. Agriculture 1947 Riverside, California U. S. Regional Salinity Laboratory.Google Scholar
Anonymous, , American Society for Testing Materials Standards, 1949 Book, Pt. III 1949 11771179.Google Scholar
Anonymous, California Research Corporation, Particle-size data on the reference clay minerals Am. Petroleum Inst., Proj. 49, Prelim. Rept. 7 1950 129133.Google Scholar
Abdun-Nur, E A, A standard classification of soils as proposed by the Bureau of Reclamation Am. Soc. Testing Mat., Sp. Tech. Pub. no. 113 1950 2541.Google Scholar
Ackermann, Ernst, 1948 (tr. 10501, Thixotropie und Fliesseigen-schaften feinkörniger Boden: Geologische Rundschau, v. 36, 1948; translated by H. A. G. Nathan, Nat. Res. Council of Canada, Trans. TT 150, 21 pp.Google Scholar
Allen, H, Classification of soils and control of procedures used in construction of embankments Public Roads 1942 22 263284.Google Scholar
Am. Inst. Min. Met. Eng. Tech. Pub. 1486 1942 6 4.Google Scholar
Barshad, I, Yermiculite in its relation to biotite as revealed by base exchange reactions, X-ray analysis, differential thermal curves, and water content Am. Mineralogist 1948 33 655678.Google Scholar
Bates, T F Hildebrand, F A Swineford, A, Morphology and structure of endellite and halloysite Am. Mineralogist 1950 35 463484.Google Scholar
Baver, L D, Soil physics 1940 New York John Wiley and Sons, Inc. 9697.Google Scholar
Baver, L D Winterkorn, H F, Sorption of liquids by soil colloids, II Soil Sci. 1935 40 403419.CrossRefGoogle Scholar
Beskow, G, (tr. 1947), Soil freezing and frost heaving with special application to roads and railroads Swedish Geol. Soc., ser. C. 1935.Google Scholar
Beskow, G, Scandinavian soil frost research of the past decade Highway Res. Board Proc 1948 27 372382.Google Scholar
Bodman, G B, Discussion [of Lee, 1941] Am. Soc. Civil Eng., Trans. 1941 106 577607.Google Scholar
Bonnell, D G R, Studies of gels. II. Effect of hydrogen ion concentration on the syneresis of silica gel Faraday Soc., Trans. 1932 28 1219.CrossRefGoogle Scholar
Bonnell, D G R, Gels. IV, Swelling of silica gel Faraday Soc. Trans. 1933 29 12171220.CrossRefGoogle Scholar
Bonnell, D G R, Gels. V, Effect of neutral electrolytes on the syneresis of silica gels Faradav Soc. Trans. 1983 29 12211226.CrossRefGoogle Scholar
Bosazza, V L, The adsorption of some organic dyes by clays and clay minerals Am. Mineralogist 1944 29 235241.Google Scholar
Bouyoucous, G. J., 1915, Effect of temperature on some of the most important physical processes in soil: Michigan Agri. Expt. Sta., Tech. Bull. 22.Google Scholar
Bradley, W F, The structural scheme of attapulgite Am. Mineralogist 1940 25 405410.Google Scholar
Bradley, W F, Molecular associations between mont-morillonite and some polyfunctional organic liquids Am. Chem. Soc. Jour. 1945 67 975981.CrossRefGoogle Scholar
Bradley, W F, Diagnostic criteria for clay minerals Am. Mineralogist 1946 30 704713.Google Scholar
Bradley, W F Grim, R E, High temperature thermal effects of clav and related materials Am. Mineralogist 1951 36 182201.Google Scholar
Bradley, W F Grim, R E Clark, W I, A study of the behavior of montmorillonite upon wetting Zeitschr. Kristallographie 1937 97 216222.Google Scholar
Braune, H Richter, I, (abst. 1950) The thixotropy of bentonite suspensions Kolloid-Zeitschr. 1949 113 2029.CrossRefGoogle Scholar
Brindley, G W, X-ray identification and structure of clay minerals London, Minereralog. Soc. 1951.Google Scholar
Burmister, D M, Principles and techniques of soil identification Highway Res. Board, Proc. 1949 29 402433.Google Scholar
Burnett, G E, Bentonite and cement for use as grout in fine sand formations U. S. Bur. Reclamation, Denver, Colorad. 1936.Google Scholar
Burwell, E B Jr. Moneymaker, B C, Geology in dam construction Geol. Soc. America, Berkey 1950 1143.Google Scholar
Carey, A S, Natural clay grout in open work gravel (abst.) Geol. Soc. America Bull. 1949 60 18781879.Google Scholar
Casagrande, A, The structure of clay and its importance in foundation engineering Boston Soc Civil Eng. 1932 19 72126.Google Scholar
Casagrande, A, Classification and identification of soils Am. Soc. Civil Eng., Trans. 1948 113 901991.CrossRefGoogle Scholar
Casagrande, L, Grossversuch zur Erhohung der Traffa-Mgheit von schwebenden Pfahlgrundungen durch electro-chemische Behandlung Die Bautechnik 1937 15 1416.Google Scholar
Casagrande, L, Die elektrochemische Boden Verfestigung Die Bautechnik 1939 17 228230.Google Scholar
Casagrande, L, The application of electro-osmosis to practical problems in foundations and earth works Great Britain Dept. Sci. Indus. Res., Building Res., Tech. Paper no. 30 1947.Google Scholar
Casagrande, L, Electro-osmosis in soils Geotechnique 1949 1 159177.CrossRefGoogle Scholar
Conley, J E Wilson, H Klinefelter, T A et al. , Production of lightweight concrete aggregates from clays, shales, slates and other materials U. S. Bur. Mines Rept. Inv. 4401 1948.Google Scholar
Cordon, W A, Grouting with bentonite mixed in products of petroleum U. S. Bur. Reclamation Laboratory Rept. C-229 1944.Google Scholar
Cordon, W A Hickey, M E, Properties of concrete made with typical lightweight aggregates U. S. Bur. Reclamation, Materials Laboratory Rept. C-385 1948.Google Scholar
Cox, J B, Construction control on Hawaiian hydraulic fill dam based on physical chemistry Hydraulic Eng. 1929 5 1620.Google Scholar
Cummings, A. E., 1947, The foundation problem in Mexico City: Southern Texas Conf. on Soil Mechanics and Foundation Eng. Pro., v. pp.Google Scholar
Davidson, D T, Exploratory evaluation of some organic cations as soil stabilizing agents Highway Res. Board, Proc 1949 29 531537.Google Scholar
Davidson, D T Glab, J E, An organic compound as a stabilizing agent for two soil-aggregate mixtures Highway Res. Board Proc 1949 29 537543.Google Scholar
Dawson, R F, (in press), The design of building footings on expansive clay soils Am. Soc. Civil Eng., Proc 1953.Google Scholar
Dean, L A, Differential thermal analysis of Hawaiian soils Soil Sci. 1947 63 95105.CrossRefGoogle Scholar
Dean, L A Rubins, E J, Anion exchange in soils, Part I Exchangeable phosphorus and the anion exchange capacity Soil Sci. 1947 63 377.CrossRefGoogle Scholar
DeLapparent, J, An essential constituent of fuller’s earth Comptes Rendus Acad. Sci. 1935 201 481483.Google Scholar
Denisov, N J, Karpoff, K P Gibbs, H J, (tr. 1951), Settlement properties of loessial soils: Govt. Pub. Olfice Soviet Sci., abst. U. S. Bur. Reclamation, Eng. Laboratories 1946.Google Scholar
Dyal, R S Hendricks, S B, Total surface of clays in polar liquids as a characteristic index Soil Sci. 1950 69 421432.CrossRefGoogle Scholar
Die Bautechnik 1935 13 18.Google Scholar
Endell, K tr, The swelling capacity of clays in the construction foundation and its technical significance Die Bautechnik 1941 19 220.Google Scholar
Endell, K Hofmann, H, Electrochemical hardening of clay soils First Internat. Conf. Soils Mechanics and Foundations Eng. (Harvard) 1936 1 273275.Google Scholar
Erlenbach, L, Anwendung de Elektro-Chemischen Ver-festigund auf schwimmende Pfahlgrundungen Die Bautechnik 1936 14 257259.Google Scholar
Fairbairn, H W, Structural petrology of deformed rocks Cambridge, Mass., Addison-Wesley Press, Inc. 1949.Google Scholar
Felt, E J, Field trials to locate and eliminate potential wave areas prior to construction of concrete pavement on soils developed from Taylor marl Portland Cement Assoc, (Chicago) 1950.Google Scholar
Pelt, E J, Influence of soil volume change and vegetation on highway engineering Univ. Colorado Eng. Exp. Sta. Circ, Highway series no. 26 1953 5276.Google Scholar
Ferguson, J Applebey, M P, The syneresis of silicagel Faraday Soc Trans 1930 26 642655.CrossRefGoogle Scholar
Fersman, A, On the palygorskite group Acad. Imperial Sci. St. Petersburg Bull. 1908 2 255274.Google Scholar
Fischer, E K Gans, D M, Dispersions of finely divided solids in liquid media Colloid Chemistry 1946 VI 286327.Google Scholar
Eraser, H J, Experimental study of the porosity and permeability of clastic sediments Jour. Geology 1935 43 785909.Google Scholar
Freundlich, H., 1930, Kapillarchemie, v. 1, 4th ed., Leipzig.Google Scholar
Freundlich, H, Thixotropy, Paris, Hermann and Co. 1935.Google Scholar
Freundlich, H Juliusburger, F, Quicksand as a thixotropic system Faraday Soc. Trans. 1935 31 769.CrossRefGoogle Scholar
Frye, J C Swineford, A, Silicified rock in the Ogallala formation Kansas Geol. Survey Bull. 1946 64 3376.Google Scholar
Gallaway, B. M., and Buchanan, S. J., 1951, Lime stabilization of clay soil: Texas Agri. and Mech. Coll., 5th ser., v. 7, Texas Expt. Sta. Bull. 124, 57 pp.Google Scholar
Gapon, E N, (abst. 1930), The theory of syneresis Ukrainskii Khem. Zhur., Sci. Pt., 5 1930 5961.Google Scholar
Giesecke, S E, Columns and walls lifted by swelling clay under floor Engineering News-Record 1922 88 192193.Google Scholar
Gieseking, J E, The mechanism of cation exchange in the montmorillonite-beidellite-nontronite type of clay minerals Soil Sci. 1939 47 114.CrossRefGoogle Scholar
Glasstone, S, Textbook of physical chemistry 1946 2 New York Van Nostrand Company, Inc..Google Scholar
Goldberg, I Klein, A, Some effects of treating expansive clays with calcium hydroxide Am. Soc. Testing Mat., Special. Tech. Pub. 1953 142 5367.Google Scholar
Graton, L C Eraser, H J, Systematic packing of spheres—with particular relation to porosity and permeability Jour. Geology 1935 43 785909.CrossRefGoogle Scholar
Green, H Weltmann, R N, Thixotropy Colloid Chemistry 1946 6 328347.Google Scholar
Grim, R E, Mineralogical composition in relation to the properties of certain soils Geotechnique 1949 1 139147.CrossRefGoogle Scholar
Grim, R E, Modern concepts of clay minerals Jour. Geology 1942 50 225275.CrossRefGoogle Scholar
Grim, R E Allaway, W H Cuthbert, F L, Reactions of different clay minerals with some organic cations Am. Cer. Soc Jour. 1947 30 137142.CrossRefGoogle Scholar
Gruner, J W, The crystal structure of nacrite and a comparison of certain optical properties of the kaolin group with structure Zeitschr. Kristallographic. 1933 85 345364.Google Scholar
Gruner, J W, The structures of vermiculites and their collapse by dehydration Am. Miueralosist 1934 11 557575.Google Scholar
Hanua, W C, Unfavorable chemical reactions of aggregates in concrete and a suggested corrective Am. Soc Testing Mat. Proc 1947 47 986.Google Scholar
Harman, C G Fraulini, F, Properties of kaolinite as a function of its particle size Am. Cer. Soc. Jour. 1940 23 252259.CrossRefGoogle Scholar
Hauser, E LeBeau, D S, Studies in colloidal clays, II Jour. Phys. Chemistry 1941 45 5464.CrossRefGoogle Scholar
Hauser, E A LeBeau, D S, Colloid chemistry of clay minerals and clay films Colloid Chemistry 1946 6 191213.Google Scholar
Havens, J H Young, J L Jr. Baker, R P, Separation, fractionation, and mineralogy of clays in soils Highway Res. Board Proc 1948 28 409480.Google Scholar
Havens, J H Young, J L Jr. Drake, W B, Some chemical, physical, and mineralogical features of soil colloids Highway Res. Board Proc 1949 29 507577.Google Scholar
Heller, W, (abst. 1937), Syneresis Comptes Rendus Acad. Sci. 1937 204 4345.Google Scholar
Hendricks, S B, Concerning the crystal structure of kaolinite, Al2O3-2SiO2-2H2O, and the composition of anauxite Zeitschr. Kristallograpbie 1930 95 247252.Google Scholar
Hendricks, S B, Base exchange of the clay mineral mont-morillonite for organic cations and its dependence upon adsorption due to van der Waals’ forces Jour. Phys. Chemistry 1941 45 6581.CrossRefGoogle Scholar
Hendricks, S B Jefferson, M E, Crystal structure of vermiculites and mixed vermiculite-chlorites Am. Mineralogist 1938 23 851862.Google Scholar
Hendricks, S B Nelson, R A Alexander, L T, Hydration mechanism of the clay mineral montmorillonite saturated with various cations Am. Chem. Soc. Jour. 1940 62 14571464.CrossRefGoogle Scholar
Hirashima, K B, Highway experience with thixotropie volcanic clay Highway Res. Board Proc 1948 28 481494.Google Scholar
Hofmann, U Bilke, W, Über die innerkrystalline Quellung und das Basenaustauschvermogen der Montmorillonits Kolloid Zeitschr. 1936 77 239251.Google Scholar
Hofmann, U Endell, K Wilm, D, Kristallstruktur und Quellung von Montmorillonit Zeitschr. Kristallograpbie 1933 86A 340347.Google Scholar
Hofmann, U Endell, K Wilm, D, The crystal structure and swelling of montmorillonite Zeitschr. Kristallograpbie 1933 80 340348.Google Scholar
Hofmann, U Endell, K Wilm, D, Roentgenogra-phlsche und kolloid chemische Untersuchungen über Ton Angewandte Chemie 1934 47 539547.CrossRefGoogle Scholar
Holtz, W G Gibbs, H J, (in press), Engineering properties of expansive clays Am. Soc. Civil Eng. 1953.Google Scholar
Hoskings, J S, The soil clay mineralogy of some Australian soils developed on granitic and basaltic parent material Australian Council of Sci. and Ind. Res. 1940 13 206216.Google Scholar
Hostetter, J C Roberts, H S, Notes on the dissociation of ferric oxide dissolved in glass and its relation to the color ot iron-bearing glasses Am. Ceramic Soc. Jour. 1921 4 927938.CrossRefGoogle Scholar
Houwink, R Burgers, W G, Elasticity, plasticity, and structure of matter Cambridge Univ. Press 1939.Google Scholar
Hvorslev, M. J. 1939, Über die Pestigheitseigenschaften gestorter bindiger Boden: Ingeniorvidenskabelige Skrifter, A. 45, Copenhagen.Google Scholar
Jackson, F G, Oxidation of ceramic ware during firing: II, Decomposition of various compounds of iron with sulfur under simulated kiln conditions Am. Ceramic Soc Jour. 1924 7 223237.CrossRefGoogle Scholar
Jennings, J E, Foundations for buildings in the Orange Free State gold fields South African Inst. Civil Eng., Jour. 1950 49 87112.Google Scholar
Jenny, H, Studies on the mechanism of ionic exchange in colloidal aluminum silicates Jour. Phys. Chemistry 1932 36 22172258.CrossRefGoogle Scholar
Jenny, H Gieseking, J E, Behavior of polyvalent cations in base exchange Soil Sci. 1936 42 273.Google Scholar
Jenny, H Reitemeier, R F, Ionic exchange in relation to the stability of colloidal systems Jour. Phys. Chemistry 1934 39 593604.CrossRefGoogle Scholar
Johnson, R H, The cementation process in sandstone Am. Assoc Petroleum Geologists Bull. 1920 4 3335.Google Scholar
Johnson, A L Davidson, D T, Clay technology and its application to soil stabilization Highway Res. Board Proc 1947 27 418430.Google Scholar
Jüngst, H, Zur geologischen Bedeutung der Svnarese Geol. Rundschau 1934 25 312325.CrossRefGoogle Scholar
Karpoff, K P, Stabilization of fine-grained soils by electro-osmotic and electrochemical methods Highwav Res. Board Proc 1953 32 526538.Google Scholar
Kerr, P. F., and Kulp, J. L., 1949, Reference clay localities: Am. Petroleum Inst., Proj. 49, Prelim. Rept. 2, 103 pp.Google Scholar
Kerr, P. F., Kulp, J.L., and Hamilton, P. K., 1949, Differential thermal analyses of reference clay mineral specimens: Am. Petroleum Inst., Proj. 49, Prelim. Rept. 3, 48 pp.Google Scholar
Knight, B H, Aggregates for concrete work Civil Eng. and Public Works Rev. 1949 44 448450.Google Scholar
Kolbuszewski, J, A study of the electro-chemical hardening of clay Civil Eng. and Public Works Rev. 1952 47 556558.Google Scholar
Kruge, R W Sparks, M M Tunma, E C, Lightweight aggregate concrete Am. Concrete Inst., Proc 1949 45 625642.Google Scholar
Kubiena, W L, Micropedology 1938 Collegiate Press, Inc. Ames, Iowa.Google Scholar
Ladd, G E, Bank slide in deep cut caused by drought Engineering News-Record 1934 112 324326.Google Scholar
Lambe, T W, The improvement of soil properties with dispersants Boston Soc. Civil Eng. Jour. 1954 41 189207.Google Scholar
Lambe, T. W., 1954b, The iiermeability of fine-grained soils: Am. Soc. Testing Mat. Proc, v. 59 (in press).Google Scholar
Lambe, T W Martin, R T, Composition and engineering properties of soil Highwav Res. Board Proc 1953 32 570590.Google Scholar
Lambe, T W Michaels, W S, Altering soil properties with chemicals Chem. Eng. News 1954 32 488492.CrossRefGoogle Scholar
Larsen, D H, Colloidal features of drilling fluids Colloid Chemistry 1940 6 509530.Google Scholar
Laws, W. D., and Page, J. B., 1946, Silicate of soda as a soil stabilizing agent: Highway Res. Board Bull. 1, 21 pp.Google Scholar
Lea, F M, The chemistry of pozzolans Symposium on the chemistry of cement, [Stockholm], Proc. 1938 460490.Google Scholar
Lee, C H, Sealing the lagoon lining on Treasure Island with salt Am. Soc. Civil Eng. Trans. 1941 106 577607.CrossRefGoogle Scholar
Lewis, D R, Base exchange data on the reference clay minerals Am. Petroleum Inst. Proj. 49, Prelim. Rept. 7 1950 91133.Google Scholar
Longchambon, M H, Caracteristique do la sépiolite d’am-pandandrava et la formule des sepiolites Soc. Francalse Mincralogie Bull. 3937 60 232276.CrossRefGoogle Scholar
Loughlin, G F, Usefulness of petrology in the selection of limestone Rock Products 1928 31 50.Google Scholar
MacEwan, D M C, Halloysite and metahallovsite Nature 1944 154 577578.CrossRefGoogle Scholar
MacLean, D J Gwatkin, P M, Moisture movements occurring in soil due to the existence of a thermal gradient Road Res. Lab., Eng., Note 1946.Google Scholar
Macksoud, A M, The nature and origin of mountain leather 1939 129.Google Scholar
Marshall, C E, The colloid chemistry of the silicate minerals 1949 New York Academic Press, Inc..Google Scholar
Maryott, A. A., and Smith, F. R., 1951, Table of dielectric constants of pure liquids: U. S. Dept, Commerce, Nat. Bur. Standards, Circ 514, 44 pp.Google Scholar
Mattson, S, The laws of soil colloidal behavior I Soil Sci. 1929 28 179.CrossRefGoogle Scholar
Mielenz, R C King, M E, Identification of clay minerals bv staining tests Am. Soc Testing Mat. Proc 3951 51 12131233.Google Scholar
Mielenz, R C Okeson, C J, Foundation displacements along the Malheur River siphon as effected bv swelling shales Econ. Geology 1940 41 266283.CrossRefGoogle Scholar
Mielenz, R C Greene, K T Schieltz, N C, Natural pozzolans for concrete Econ. Geology 1953 40 311328.Google Scholar
Mielenz, R C Witte, L P Glantz, O J, Effect of calcination on natural pozzolans Am. Soc. Testing Mat. Spec Tech. Pub. 1950 99 4391.Google Scholar
Nelson, R A Hendricks, S B, Specific surface of some clav minerals, soils, and soil colloids Soil Sci. 1943 50 285296.CrossRefGoogle Scholar
Nutting, P G, Some standard dehydration curves of minerals U. S. Geol. Survey, Prof. Paper 197-E 3943 397.Google Scholar
Orton, E Staley, H F, Status of C, Fe, and S in clays during various stages of burning Nat. Brick Mfgs. Assoc, 3rd Rept., Indianapolis, Indiana 1909.Google Scholar
Parmelee, V W Rodriquez, A R, Catalytic mullitization of kaolinite metallic oxide Am. Ceramic Soc Jour. 1942 25 1.CrossRefGoogle Scholar
Pauling, L, The structure of micas and related minerals Xatl. Acad. Sci. Proc 1930 10 123129.CrossRefGoogle Scholar
Pennington, R P Jackson, M L, Segregation of the clay minerals of polycomponcnt soil clays Soil. Sci. America Proc 1947 12 452457.CrossRefGoogle Scholar
Petersen, T H, Lightweight aggregate concretes Housing and Home Finance Agency, U. S. Govt. Printing Off. 1950.Google Scholar
Pettijohn, F J, Sedimentary rocks 1949 New York Harper Brothers 4649.Google Scholar
Phelps, D S, Removing clay from gravel Rock Products 1952 55 64.Google Scholar
Plank, C J Drake, L C, Differences between silica and silica-alumina gels. II., A proposed mechanism for the gelation and syncresis of these gels Colloid Sci. Jour. 1947 2 413427.CrossRefGoogle Scholar
Prakash, S, (abst. 1933), Continuity of phases during sol-gel transformations Kolloid-Zeitschr. 1933 64 293300.CrossRefGoogle Scholar
Preece, E F, Geotechnics and geotechnical research Highway Res. Board Proc 1947 27 384416.Google Scholar
Price, W H Cordon, W A, Tests of lightweight aggregate concrete designed for monolithic construction Am. Concrete Inst. Proc 1949 45 581600.Google Scholar
Rhoades, R Mielenz, R C, Petrographic and mineralogie characteristics of aggregates Am. Soc. Testing Mat. Spec. Tech. Pub. 83 1948 2048.CrossRefGoogle Scholar
Riley, C M, Relation of chemical properties to the bloating of clays Am. Ceramic Soc. Jour. 1951 34 121128.CrossRefGoogle Scholar
Rosenquist, I Q, Om ieires kvikkagtighet Statens Yeg-vesen Veglaboratoriet, Medd. 4 1946.Google Scholar
Ross, C S Hendricks, S B, Minerals of the mont-morillonite group IJ. S. Geol. Survey Prof. Paper 205-B 1945.Google Scholar
Rossi, G Marescotti, A, (abst. 1937), Syneresis II Gazz. Chim. ital. 1936 66 223227.Google Scholar
Russell, J C Olmstead, L B Hendrickson, B H, Form of soil structure Am. Soil Surv. Assoc Bull. 1929 10 120133.Google Scholar
Samuels, S. G., 1950, The effect of base exchange on the engineering properties of soils: Dept. Sci. and Indus. Res., Bldg. Res. Sta., Rept. C176, 16 pp.Google Scholar
Schaad, W Haefeli, R, Die Anwendung der Eleck-trizitat zur Entwasserung und Verbesserung feinkorniger Boden arten Strasse and Verkehr 1946 23/24 311316.Google Scholar
Schaad, W Haefeli, R, Electrokinetic phenomena and their application in soil mechanics Schweizerisehe Bauzeitung 1947 65 216217.Google Scholar
Schachtschabel, P, Untersuchungen über die Sorption der Tonmineralien und organischen Bodenkolloide Kolloid-Beihefte 1940 51 199276.CrossRefGoogle Scholar
Shorey, R C, Presence of some benzene derivatives in soil Jour. Agr. Res. 1914 1 357363.Google Scholar
Civil Eng. 1939 4 11.Google Scholar
Smith, W O, Thermal conductivities in moist soils Soil Sci. America Proc 1939 4 3240.CrossRefGoogle Scholar
Soveri, Urpu, 1950, Differential thermal analyses of some Quaternary Clays of Fennoscandia: Suomalaisen Tiedeakatemian Toimituksia, Annales Academiae Scientiarum Fennicae, Ser. A., III Geologica-Geographica 23, 103 pp.Google Scholar
Spangler, M G, Electrical hardening of clays adjacent to aluminum friction piles Highway Res. Board Proc 1949 29 589599.Google Scholar
Spiel, S, Effect of adsorbed electrolytes on properties of monodispersed elay-water systems Am. Ceramic Soc. Jour. 1940 23 3338.CrossRefGoogle Scholar
Steinfeld, K, Die Entwasserung von Feinboden Die Bautechnik 1951 28 269274.Google Scholar
Stout, P R, Alterations in the crystal structure of clay minerals as a result of phosphate ffxation Soil Sci. Soc. America Proc 1939 4 177182.CrossRefGoogle Scholar
Taber, S, Frost heaving Jour. Geology 1929 37 428461.CrossRefGoogle Scholar
Taber, S, The mechanics of frost heaving Jour. Geology 1930 38 303317.CrossRefGoogle Scholar
Talmud, T Suchovolskaya, S, (abst. 1931), Models of lyophilic colloids Kolloid-Zeitschr. 1931 55 4864.CrossRefGoogle Scholar
Terzaghi, K, Mechanics of landslides Geol. Soc. America, Berkey Volume 1950 83123.CrossRefGoogle Scholar
Terzaghi, K Peck, R B, Soils mechanics in engineering practice 1948 New York John Wiley and Sons.Google Scholar
Trask, P D, Trask, P D, Organic content of Recent marine sediments Recent marine sediments. Am. Assoc. Petroleum Geologists 1939 429.CrossRefGoogle Scholar
Trejo, J H, Water movement in soils under thermic potentials Princeton Univ. 1946.Google Scholar
Tuthill, L H, Concrete operations in the concrete ship program Am. Concrete Inst. Proc 1945 41 137177.Google Scholar
U. S. Bur. Reclamation, Concrete manual V. S. Bur. Reclamation 1949 5.Google Scholar
Vey, D, The mechanics of soil consolidation by electro-osmosis Highway Res. Board Proc 1949 29 578589.Google Scholar
Waldschmidt, W A, Cementing materials in sandstones and their probable influence on migration and accumulation of oil and gas Am. Assoc. Petroleum Geologists Bull. 1941 25 18391879.Google Scholar
Walker, G P, Distinction of vermiculite, chlorite, and montmorillonite clays Nature 1949 164 577.CrossRefGoogle Scholar
Walker, G F, Vermiculite-organic complexes Nature 1950 166 695696.CrossRefGoogle Scholar
Weil-Malherbe, H Weiss, J, Colour reactions and adsorption of some aluminosilicates Chem. Soc Jour., London 1948 21642169.CrossRefGoogle Scholar
White, W A, Atterberg plastic limits of clay minerals Am. Mineralogist 1949 34 508512.Google Scholar
Winkler, H. G. F., 1938, Thixotropie von mineralpulvern mikroskopischer Grosse: Kolloid-Beihefte, v. 48.CrossRefGoogle Scholar
Winkler, H G F, Über die Thixotropie des Montmoril-lonits Kolloid-Zeitschr. 1943 105 2938.CrossRefGoogle Scholar
Winkler, H G F, Clays and their properties—an interpretation Research 1949 2 175183.Google Scholar
Winterkorn, H F, Physical-chemical testing of soils and application of results in practice Highway Res. Board Proc 1940 20 798806.Google Scholar
Winterkorn, H F, Principles and practice of soil stabilization Colloid Chemistry 1946 6 459492.Google Scholar
Winterkorn, H F, Fundamental similarities between electro-osmotic and thermo-osmotic phenomena Highway Res. Board Proc 1947 27 443455.Google Scholar
Winterkorn, H F, A fundamental approach to the stabilization of cohesive soils Highway Res. Board Proc 1948 28 415422.Google Scholar
Winterkorn, H F, Job experience with exchange phenomena involving inorganic and organic ions Am. Soc Testing Mat. Special Tech. Pub. 1953 142 2943.Google Scholar
Winterkorn, H F, Surface-chemical properties of clay minerals and soils Am. Soc. Testing Mat. Special Tech. Pub. 1953 142 4452.Google Scholar
Winterkorn, H F Shoudhury, A N D, Importance of volume relationships in soil stabilization Highwav Res. Board Proc 1949 29 553560.Google Scholar
Winterkorn, H F Eckert, G W, Physico-chemical factors of importance in bituminous soil stabilization Assoc Asphalt Paving Technologists Proc 1940 11 204257.Google Scholar
Winterkorn, H F Moorman, R B, A study of changes in physical properties of Putnam soil induced by ionic substitution Highway Res. Board Proc 1948 21 415434.Google Scholar
Winterkorn, H P Tschebotariof, G T, Sensitivity of clay to remolding and its possible causes Highway Res. Board Proc. 1947 27 435442.Google Scholar
Wintermyer, A M, A new soil-dispersing apparatus for mechanical analysis of soils Public Roads 1948 25 102108.Google Scholar
Wooltorton, F L D, Movements in the desiccated alkaline soils of Burma Am. Soc. Civil Eng. Proc 1950 76 6399.Google Scholar
Yoder, R E, A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses Am. Soc Agronomy, Jour. 1936 28 337351.CrossRefGoogle Scholar
Zakharov, S A, Kurs pockvovedenuya Moscow-Leningrad 1927.Google Scholar
Zeevaert, L, The outline of a mat foundation design on Mexico City clay Southern Texas Conf. on Soil Mechanics and Foundation Engineering Proc 1947.Google Scholar
Zeevaert, L, An investigation of the engineering characteristics of the volcanic lacustrine clay deposits beneath Mexico City: Univ. Illinois, Ph. D. Thesis in Engineering 1949.Google Scholar