Hostname: page-component-cc8bf7c57-5wl6q Total loading time: 0 Render date: 2024-12-09T10:39:21.409Z Has data issue: false hasContentIssue false

Wettability Contrasts in Kaolinite and Illite Clays: Characterization by Infrared and X-Ray Absorption Spectroscopies

Published online by Cambridge University Press:  28 February 2024

Jean-Louis Bantignies
Affiliation:
Laboratoire pour l'Utilisation du Rayonnement Electromagnétique, CNRS-CEA-MENESRIP, bâtiment 209D, Université Paris-Sud, 91 405 Orsay, France
Christophe Cartier dit Moulin
Affiliation:
Laboratoire pour l'Utilisation du Rayonnement Electromagnétique, CNRS-CEA-MENESRIP, bâtiment 209D, Université Paris-Sud, 91 405 Orsay, France
Hervé Dexpert
Affiliation:
Laboratoire pour l'Utilisation du Rayonnement Electromagnétique, CNRS-CEA-MENESRIP, bâtiment 209D, Université Paris-Sud, 91 405 Orsay, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A reservoir rock is a porous geological formation in contact with 2 liquids, brine and oil. An improved knowledge of rock wettability is of primary importance to estimate the amount of crude oil in underground resources. The petroleum industries have observed that wettability contrasts in sedimentary reservoir rocks are largely correlated to the presence of clays, illite and/or kaolinite in the rocks’ intergranular space.

More precisely, the grain surfaces of illite show a preference for brine. Kaolinite preferentially adsorbs oil, which imparts its hydrophobic characteristics to the mineral surface. Using X-ray absorption spectroscopy (XAS) and Fourier transform infrared (FTIR) spectroscopy, we studied the adsorption process of asphaltenes in the presence of water at the microscopic level. We demonstrate experimentally that the wettability contrasts observed in kaolinite and illite are related to structural differences between these 2 clays, and we show the role of the grain surface hydroxyls. With clay materials, the purity of the samples is the most important limitation of the quantitative use of extended X-ray absorption fine structure (EXAFS).

Type
Research Article
Copyright
Copyright © 1997, The Clay Minerals Society

References

Bantignies, J.L., Cartier dit Moulin, C., Dexpert, H., Flank, A.M. and Williams, G.. 1995. Asphaltenes adsorption on kaolinite: Characterization by infrared microspectroscopy and X-ray absorption spectroscopy. CR Acad Sci, Ser II a: 699709.Google Scholar
Barrios, J., Plancon, A., Cruz, M.I. and Tchoubar, C.. 1977. Qualitative and quantitative study of stacking faults in a hydrazine treated kaolinite. Relationship with the infrared spectra. Clays Clay Miner 25: 422429.CrossRefGoogle Scholar
Berhouet, S.. 1994. Modélisation moléculaire des intéractions entre minéraux et constituants lourds du pétrole [Ph.D. dissertation]. Paris, France: University of Paris IV. 187 p.Google Scholar
Bish, D.L. and Van Dreele, R.B.. 1989. Rietvield refinement of non-hydrogene atomic positions in kaolinite. Clays Clay Miner 37: 289296.CrossRefGoogle Scholar
Brindley, G.W., Kao, C., Harrison, J.L., Lipsicas, M. and Raythatha, R.. 1986. Relation between structural disorder and other characteristics of kaolinites and dickites. Clays Clay Miner 34: 239249.CrossRefGoogle Scholar
Rriois, V., Sainctavit, P.h. and Flank, A.-M.. 1993. Polarization dependence of XANES of α-quartz: Experiments and full multiple-scattering calculations. Proc 7th Int Conf X-ray Absorption Fine Structure; Kobe, Japan. J Appl Phys 32, suppl 32–2: 5254.Google Scholar
Brown, G.E., Calas, G., Waychunas, G.A. and Petiau, J.. 1988. X-ray absorption spectroscopy: Applications in mineralogy and geochemistry. In: Hawthorne, F.C., editor. Spectroscopic methods in mineralogy and geology. Rev Mineral 18: 431512.CrossRefGoogle Scholar
Cabaret, D., Sainctavit, P., Ildefonse, P. and Flank, A.M.. 1996. Full multiple scattering calculations on silicates and oxides at Al K-edge. J Phys Condens Matter 8: 36913704.CrossRefGoogle Scholar
Chisholm-Brause, C.J., Hayes, K.F., Roe, A.L., Brown, G.E. Jr., Parks, G.A. and Leckie, J.O.. 1990. Spectroscopic investigation of Pb(II) complexes at the γ-Al2O3/water interface. Geochim Cosmochim Acta 54: 18971909.CrossRefGoogle Scholar
Chisholm-Brause, C.J., O'Day, P.A., Brown, G.E. Jr. and Parks, G.A.. 1990. Evidence for multinuclear metal-ion complexes at solid/water interfaces from X-ray absorption spectroscopy. Nature 348: 528530.CrossRefGoogle ScholarPubMed
Clementz, D.M.. 1976. Interaction of petroleum heavy ends with montmorillonite. Clays Clay Miner 24: 312319.CrossRefGoogle Scholar
Cuiec, L.. 1991. Evaluation of reservoir wettability and its effect on oil recovery. In: Morrow, N.R., editor. Interfacial phenomena in oil recovery 36. New York: Marcel Dekker. p 319376.Google Scholar
Czarnecka, E. and Gillott, J.E.. 1980. Formation and characterization of clay complexes with bitumen from Athabasca oil sand. Clays Clay Miner 28: 197203.CrossRefGoogle Scholar
Farmer, V.C.. 1974. The layer silicates. In: Farmer, V.C., editor. The infrared spectra of minerals. London: Mineral Soc. p 331363.CrossRefGoogle Scholar
Fassi-Fihri, O.. 1991. Wettability studies at the pore level: A new approach by the use of cryo-scanning electron microscopy. Review of the French Institute of Petroleum. IFP report 38985. p 44.Google Scholar
Heller-Kallai, L., Huard, E. and Prost, R.. 1991. Disorder induced by de-intercalation of DMSO from kaolinite. Clay Miner 26: 245253.CrossRefGoogle Scholar
Henderson, C.M.B., Cressey, G. and Redfern, S.A.T.. 1995. Geological applications of synchrotron radiation. Radiat Phys Chem 45: 459481.CrossRefGoogle Scholar
Ildefonse, P., Calas, G., Flank, A.M. and Lagarde, P.. 1995. Low Z elements K-edge X-ray absorption spectroscopy in minerals and disordered systems. Nucl Instrum Methods Phys Res, Sect B 97: 172175.CrossRefGoogle Scholar
Ildefonse, P., Calas, G., Kirkpatrick, R.J., Montez, B., Flank, A.M. and Lagarde, P.. 1992. Local environment of aluminum in amorphous alumino-silicates by using XANES and MAS NMR. In: Kharada, H., Maest, D., editors. Proc 7th Int Symp on Water-rock Interaction; Rotterdam, The Netherlands. Rotterdam: Balkema. p 153158.Google Scholar
Ildefonse, P., Calas, G., Kirkpatrick, R.J., Montez, B., Flank, A.M. and Lagarde, P.. 1994. 27Al MAS NMR and aluminum X-ray absorption near edge structure study of imogolite and allophanes. Clays Clay Miner 42: 276287.CrossRefGoogle Scholar
Jerauld, G.R. and Rathmell, J.J.. 1994. Wettability and relative permeability of Prudhoe bay: A case study in mixed-wet reservoirs. Proc 3rd Int Symp on Evaluation of Reservoir Wettability and its Effect on Oil Recovery; Laramie, Wyoming. Laramie: Modern Printing. p 1.Google Scholar
Johnston, C.T., Sposito, G., Agnew, S.F. and Bish, D.L.. 1990. Polarized single-crystal Fourier-transform infrared microscopy of Ouray dickite and Keokuk kaolinite. Clays Clay Miner 38: 573583.CrossRefGoogle Scholar
Johnston, C.T., Sposito, G. and Birge, R.R.. 1985. Raman spectroscopic study of kaolinite in aqueous suspension. Clays Clay Miner 33: 483489.CrossRefGoogle Scholar
Kamijo, N., Umesaki, N., Fukui, K., Guy, C., Tadanaga, K., Tatsumisago, M. and Minami, T.. 1994. Soft X-ray XAFS: Local structure of mullite gels prepared from modified aluminum alkoxides. J Non-Cryst Solids 177: 187192.CrossRefGoogle Scholar
Keller-Besrest, F., Benazeth, S. and Souleau, C.. 1994. Pharmatical silver doped clays: An EXAFS study from silver to silicon K-edges absorption. J Phys IV, colloque C9 4: 299302.Google Scholar
Koningsberger, D.C. and Miller, J.T.. 1994. Local structure determination of aluminum in Y zeolite: Application of low energy X-ray absorption fine structure spectroscopy. Catal Lett 29: 7790.CrossRefGoogle Scholar
Koningsberger, D.C. and Prins, R., editors. 1987. X-ray absorption: Principles, applications, techniques of EXAFS, SEXAFS, and XANES in chemical analysis. New York: J Wiley. 238 p.Google Scholar
Laffon, C.. 1990. Etude par absorption X de matériaux céramiques obtenus par pyrolyse de précurseurs organosilicies [Ph.D. dissertation]. Orsay, France: University of Paris-Sud. 141 p.Google Scholar
Lagarde, P., Flank, A.-M., Tourillon, G., Liebermann, R.-C. and Itie, J.-P.. 1992. X-ray absorption near edge structure of quartz. Application to the structure of densified silica. J Phys 1: 10431050.Google Scholar
Landron, C., Cote, B., Massiot, D., Coutures, J.P. and Flank, A.M.. 1992. Aluminum XAS and NMR spectroscopic studies of calcium aluminosilicate glasses. Phys Status Solid: B 171: 920.CrossRefGoogle Scholar
Ledoux, R. and White, J.L.. 1964. Infrared study of the OH groups in expanded kaolinite. Science 143: 244246.CrossRefGoogle ScholarPubMed
McKeown, D.A.. 1989. Aluminum X-Ray absorption near-edge spectra of some oxyde minerals: Calculation versus experimental data. Phys Chem Miner 16: 678683.CrossRefGoogle Scholar
McKeown, D.A., Waychunas, G.A. and Brown, G.E.. 1985. EXAFS study of the coordination environment of aluminum in a series of silica-rich glasses and selected minerals within the Na2O-Al2O3-SiO2 system. J Non-Cryst Solids 74: 349371.CrossRefGoogle Scholar
Mercier, F.. 1994. Caracterisation par différentes techniques de surface des associations organo-minérales dans des milieux modèles des roches réservoir de pétrole [Ph.D. dissertation]. Orsay, France: University of Paris-Sud. 150 p.Google Scholar
Michalowicz, A.. 1991. EXAFS pour le MAC. Logiciels pour la chimie. Paris: Société Française de Chimie. p 116117.Google Scholar
Nutting, P.G.. 1934. Some physical and chemical properties of reservoir rocks bearing on the accumulation discharge of oil. In: Wrather, W.E., Lahee, F.H., editors. Problems of petroleum geology. Tulsa, OK: Amer Assoc Petrol Geol. p 825832.Google Scholar
Oinuma, K. and Hayashi, H.. 1965. Infrared study of mixed-layer clay minerals. Am Min 50: 12131227.Google Scholar
Prost, R., Dameme, A., Driard, J. and Leydecker, J.P.. 1989. Infrared study of structural OH in kaolinite, dicktite, nacrite and poorly crystalline kaolinite at 5 to 600 K. Clays Clay Miner 37: 464468.CrossRefGoogle Scholar
Raupach, M., Barron, P.F. and Thompson, J.G.. 1987. Nuclear magnetic resonance, infrared, and X-ray powder diffraction study of dimethylselenoxyde intercalates with kaolinite. Clays Clay Miner 35: 208219.CrossRefGoogle Scholar
Robert, M. and Tessier, D.. 1974. Méthode de préparation des argiles des sols pour des études minérologiques. Ann Agron 25: 859882.Google Scholar
Roberts, K.J., Robinson, J., Davies, T.W. and Hooper, R.M.. 1993. Using soft X-ray adsorption spectroscopy to examine the structural changes taking place around Si and Al atoms in kaolinite following flash calcination. J Appl Phys 32: 652654.CrossRefGoogle Scholar
Rothbauer, R.. 1971. Untersuchung eines 2M1-Muscovits mit Neutronenstrahlen. Neues Jahrbuch fuer Mineralogie. Frankfurt: Institut f. Kristallographie. p 143144.Google Scholar
Saada, A.. 1995. Origine des différences de propriétés de surface responsables des contrastes de mouilabilité des minéraux argileux des gisements pétroliers [Ph.D. dissertation]. Mulhouse, France: University of Haute-Alsace. 143 p.Google Scholar
Saada, A., Siffert, B. and Papirer, E.. 1995. Comparison of the hydrophilicity/hydrophobicity of illites and kaolinites. J Colloid Interface Sci 174: 185190.CrossRefGoogle Scholar
Siffert, B., Jada, A. and Wersinger, E.. 1992. Anionic surfactant adsorption on to asphalt-covered clays. Colloids Surf 69: 4145.CrossRefGoogle Scholar
Sugahara, Y., Satokawa, S., Kuroda, K. and Kato, C.. 1988. Evidence for the formation of interlayer polyacrylonitrile in kaolinite. Clays Clay Miner 36: 343348.CrossRefGoogle Scholar
Sugahara, Y., Satokawa, S., Kuroda, K. and Kato, C.. 1990. Preparation of a kaolinite-polyacrylamide intercalation compound. Clays Clay Miner 37: 137143.CrossRefGoogle Scholar
Teo, B.K.. 1986. EXAFS: Basic principles and data analysis. Inorganic chemistry concepts, vol 9. New York: Springer-Verlag. 349 p.CrossRefGoogle Scholar
Tunney, J.J. and Detellier, C.. 1994. Preparation and characterization of two distinct ethylene glycol derivatives of kaolinite. Clays Clay Miner 42: 552560.CrossRefGoogle Scholar
Van Oss, C.J.. 1992. Determination of contact angles and pores sizes of porous media by column and thin-layer wicking. J Adhesion Sci Technol 6: 413428.CrossRefGoogle Scholar
Van Oss, C.J.. 1993. Acid-base interfacial interactions in aqueous media. Colloids Surf 78: 149.CrossRefGoogle Scholar
Yan, N. and Masliyah, J.H.. 1994. Adsorption and desorption of clay particles at the oil-water interface. J Colloid Interface Sci 168: 386392.CrossRefGoogle Scholar
Yariv, S.. 1992. Wettability of clay minerals. In: Schrader, M.E., Loeb, G.I., editor. Modern approach to Wettability, theory and applications, vol 11. New York: Plenum Pr. p 279326.CrossRefGoogle Scholar
Zoungrana, T.. 1994. Aspect énergétique de l'interface solide-liquide et étude de l'altération de mouillabilité des solides [Ph.D. dissertation]. Montpellier, France: University of Montpellier II. p 8288.Google Scholar