Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-22T04:35:36.283Z Has data issue: false hasContentIssue false

Titration of pH-Dependent Sites of Kaolinite in Water and Selected Nonaqueous Solvents

Published online by Cambridge University Press:  01 July 2024

R. H. Loeppert Jr.*
Affiliation:
Soil Science Department, University of Florida, Gainesville, Florida 32611
L. W. Zelazny*
Affiliation:
Soil Science Department, University of Florida, Gainesville, Florida 32611
B. G. Volk
Affiliation:
Soil Science Department, University of Florida, Gainesville, Florida 32611
*
1Present address: Department of Crop and Soil Sciences, Michigan State University, East Lansing, Mich. 48824, U.S.A.
2Present address: Department of Agronomy, Virginia Polytechnic Institute and State University, Blacksburg, Va. 24061, U.S.A.

Abstract

K-saturated kaolinite was titrated in 13 different solvents with tetrabutylammonium hydroxide using a combination electrode for potentiometric determination. The titer of base required to reach the final potentiometric endpoint was dependent on the solvent and increased according to the following solvent order in both the presence and absence of excess neutral salt: methanol ⩽ water < ethanol ⩽ 1-propanol < 1-butanol < 2-propanol < DMF < t-butanol < DMSO < pyridine ⩽ acetonitrile ⩽ methylethyl ketone < acetone. With the protic solvents, titratable acidity increased according to decreasing dielectric constant of the solvent and increasing size and/or branching of the aliphatic constituent. The largest titratable acidities were obtained in the dipolar aprotic solvents with negligible basic character (e.g., acetonitrile, acetone, methylethyl ketone). These results are discussed in terms of solvent properties, solvation characteristics of ions in the solvents, and acid-base behavior of crystalline edge sites.

Резюме

Резюме

Каолинит, насыщенный К, был титрован в тринадцати различных растворителях с гидроокисью тетрабутиламмония с использованием комбинированного электрода для потенциометрического определения. Титр основания, необходимый для достижения окон-чательной потенциометрической границы, зависел от растворителя и возрастал соглас-но следующему порядку растворителей в присутствии и отсутствии избыточной нейтра-ной соли: метанол≤вода<этанол≤1-пропанол<1-бутанол<2-пропанол<Т-бутанол<диметил-сульфоксид<пиридин≤ацетонитрит≤метилэтилкетон<ацетон. С протонными растворами ти-трационная кислотность возрастала в соответствии с уменьшением диэлектрической постоянной растворителя и возрастанием размера и/или разветвлением алифатического компонента. Наибольшие титрационные кислотности были получены в дипольных апро-тонных растворителях с незначительным основным характером.(т.е. ацетонитрил, аце-тон, метилэтилкетон). Эти результаты обсуждаются в отношении свойств растворителей, характеристик сольватации ионов, кислотно-основного поведения некоторых частей кристаллических граней.

Kurzreferat

Kurzreferat

Ein mit Kalium gesättigtes Kaolinit wurde in dreizehn verschiedenen Lösungsmitteln mit Tetrabutylammoniumhydroxyd titriert, indem eine Kombinationselektrode für potentiometrische Bestimmungen benutzt wurde. Die Menge von Alkali, die nötig war, um den potentiometrischen Endpunkt zu erreichen, war vom Lösungsmittel abhängig und nahm in der folgenden Lösungsmittelreihenfolge zu, sowohl in Anwesenheit wie auch in Abwesenheit eines Überschusses an neutralen Salzen: Methanol≤ Wasser< Äthanol≤ 1-Propanol< 1-Butanol< 2-Propanol< DMF< t-Butanol< DMSO< Pyridin≤ Acetonitril≤ Methyläthylketoní Aceton. Mit den protischen Lösungsmitteln nimmt die titrierbare Azidität mit abnehmender Dielektrizitätskonstante des Lösungsmittels und mit zunehmender Länge und/oder Verzweigung des aliphatischen Anteils zu. Die höchsten titrierbaren Aziditäten wurden in den dipolaren, aprotischen Lösungsmitteln mit unbedeutendem basischen Charakter (z.B. Acetonitril, Aceton, Methyläthylketon) erhalten. Diese Resultate werden hinsichtlich der Eigenschaften der Lösungsmittel, Solvatationscharakteristiken der Ionen in den Lösungsmitteln und Säure-Basen Benehmen der kristallinen Randstellen diskutiert.

Résumé

Résumé

Une kaolinite saturée de K a été titrée dans treize solvants différents avec de l'hydroxide de tétrabutylammonium utilisant une électrode de combinaison pour la détermination potentiométrique. Le titre basique nécessaire pour parvenir au point potentiométrique final dépendait du solvant, et augmentait, à la fois en la présence et l'absence d'un excès de sel neutre, dans l'ordre de solvants suivant: méthanol ≤ eau < éthanol ≤ 1-propanol < l-butanol < 2-propanol < DMF < t-butanol < DMSO < pyridine ≤ acétonitrile ≤ méthyléthyl cetone < acétone. Pour les solvants protiques, l'acidité titrable augmentait selon la constante diélectrique décroissante du solvant, et selon la taille et/ou le branchement croissant du constituant aliphatique. Les plus grandes acidités titrables étaient obtenues dans les solvants dipolaires aprotiques à caractère basique négligible (c.à.d. acétonitrile, acétone, méthyléthyl cetone). Ces résultats sont discutés selon les proprétés des solvants, les caractéristiques de dissolution des ions dans les solutions, et le comportement vis à vis des acides et des bases des sites de bords de cristaux.

Type
Research Article
Copyright
Copyright © 1979, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bates, R. G. (1973) Determination of pH; Theory and Practice: Wiley, New York.CrossRefGoogle Scholar
Brown, T. L. and Rogers, M. T. (1957) The integrated intensity of the O–H stretching band in aliphatic alcohols: J. Am. Chem. Soc. 70, 577578.CrossRefGoogle Scholar
Connick, R. E. and Fiat, D. N. (1963) Coordination numbers of beryllium and aluminum ions in aqueous solutions: J. Chem. Phys. 39, 13491351.CrossRefGoogle Scholar
Fratiello, A., Lee, R. E., Miller, D. P. and Nishida, W. M. (1967) NMR studies of electrolytes in binary solvent mixtures. II. Aqueous mixtures of acetone, acetonitrile, dimethylformamide, dimethylsulfoxide, dioxane, ethanol, methanol, N-methylformamide, tetramethylfuran, and tetramethylurea: Mol. Phys. 13, 349359.CrossRefGoogle Scholar
Fripiat, J. J., Vancompernolle, G. and Servais, A. (1960) Étude de la l'acidité de surface des silicates et alumino-silicates par titration en milieu non-aqueux. Bull. Soc. Chim. Fr. 46, 250259.Google Scholar
Fritz, J. S. (1973) Acid-base Titrations in Nonaqueous Solvents: Allyn and Bacon, Inc., Boston.Google Scholar
Grasdalen, H. (1971) Proton magnetic resonance study of the solvation of aluminum (III) in ethanol: J. Magn. Reson. 5, 8493.Google Scholar
Grasdalen, H. (1972) Proton magnetic resonance study of the solvation of aluminum (III) in n-propanol. J. Magn. Reson. 6, 336343.Google Scholar
Green, R. D. and Sheppard, N. (1972) NMR study of the solvation sphere of the Mg2+ ion in acetone + water solutions in magnesium perchlorate: J. Chem. Soc. Faraday Trans. 2 68, 821832.CrossRefGoogle Scholar
Hine, J. and Hine, M. (1952) The relative acidity of water, methanol, and other weak acids in isopropanol: J. Am. Chem. Soc. 74, 52665271.CrossRefGoogle Scholar
Kapoor, B. S. (1972) Acid character of nontronite: permanent and pH-dependent charge components of cation exchange capacity: Clay Miner. 9, 425433.CrossRefGoogle Scholar
King, E. J. (1973) Acid-base behavior. In Physical Chemistry of Organic Solvent Systems (Edited by Covington, A. K. and Dickinson, T.), pp. 331403. Plenum Press, London.CrossRefGoogle Scholar
Kohl, R. A. and Taylor, S. A. (1961) Hydrogen bonding between the carbonyl group and Wyoming bentonite: Soil Sci. 91, 223227.CrossRefGoogle Scholar
Kolthoff, I. M. (1974) Acid-base equilibria in dipolar aprotic solvents: Anal. Chem. 46, 19922003.CrossRefGoogle Scholar
Loeppert, R. H. Jr., Zelazny, L. W. and Volk, B. G. (1977) Acidic properties of kaolinite in water and acetonitrile: Soil Sci. Soc. Am. J. 41, 11011106.CrossRefGoogle Scholar
Matwiyoff, N. A. and Taube, H. (1968) Direct determination of the solvation number of magnesium (II) ion in water, aqueous acetone, and methanolic acetone solutions: J. Am. Chem. Soc. 90, 27962800.CrossRefGoogle Scholar
Mitra, R. P. and Kapoor, B. S. (1969) Acid character of montmorillonite: titration curves in water and some nonaqueous solvents: Soil Sci. 108, 1123.CrossRefGoogle Scholar
Mortland, M. M. and Raman, K. V. (1968) Surface acidity of smectites in relation to hydration, exchangeable cation, and structure: Clays & Clay Minerals 16, 393398.CrossRefGoogle Scholar
Olejnik, S., Posner, A. M. and Quirk, J. P. (1970) The intercalation of polar organic compounds into kaolinite: Clay Miner. 8, 421434.CrossRefGoogle Scholar
Orlander, D. P., Marianelli, R. S. and Larson, R. C. (1969) Solvation of aluminum (III) ion in dimethylsulfoxide-water solutions by proton magnetic resonance spectroscopy: Anal. Chem. 41, 10971099.CrossRefGoogle Scholar
Parfitt, R. L. and Mortland, M. M. (1968) Ketone adsorption on montmorillonite. Soil Sci. Soc. Am. Proc. 32, 355363.CrossRefGoogle Scholar
Sharp, W. R. (1972) Spectroscopic studies of ion-solvent interactions. University of Pittsburgh. Diss. Abstr. Int. B 1974 34(10), 4860.Google Scholar
Shirvington, P. J. (1967) The hydrolysis of some acidic metal cations in acetonitrile containing traces of water. Aust. J. Chem. 20, 447457.CrossRefGoogle Scholar
Supran, D. and Sheppard, N. (1967) A nuclear magnetic resonance study of the solvation of aluminum perchlorate by water and acetonitrile: separate resonances from differently hydrated aluminum ions: Chem. Commun. 832834.Google Scholar
Tahoun, S. A. and Mortland, M. M. (1966) Complexes of montmorillonite with primary, secondary, and tertiary amides: II. Coordination of amides on the surface of montmorillonite: Soil Sci. 102, 314321.CrossRefGoogle Scholar
Theng, B. K. G. (1974) The Chemistry of Clay-Organic Reactions: Halstead Press, New York.Google Scholar
Thomas, S. and Reynolds, W. L. (1970) Proton magnetic resonance study of aluminum (III) chloride in water-DMSO solvent mixtures: Inorg. Chem. 9, 7881.CrossRefGoogle Scholar