Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-12T09:51:50.608Z Has data issue: false hasContentIssue false

The Thermodynamic Status of Compositionally-Complex Clay Minerals: Discussion of “Clay Mineral Thermometry—A Critical Perspective”

Published online by Cambridge University Press:  28 February 2024

Stephen U. Aja
Affiliation:
Department of Geology, Brooklyn College of the City, University of New York, 2900 Bedford Avenue, Brooklyn, New York 11210
Philip E. Rosenberg
Affiliation:
Department of Geology, Washington State University, Pullman, Washington 99164

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © 1996, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, J.H. and Peacor, D.R.. 1986. Transmission and analytical electron microscopy of the smectite-to-illite transmission. Clays & Clay Miner 34: 165179.Google Scholar
Ahn, J.H. and Buseck, P.R.. 1990. Layer-stacking sequences and structural disorder in mixed-layer illite/smectite: image simulations and HRTEM imaging. Am Miner 70: 267275.Google Scholar
Aja, S.U.. 1989. A hydrothermal study of illite stability relationships between 25 and 250°C. [PhD thesis]. Pullman, Washington: Washington State University. 191 p.Google Scholar
Aja, S.U.. 1991. Illite equilibria in solutions: III. A re-interpretation of the data of Sass et al. (1987). Geochim Cosmochim Acta 55: 34313453.CrossRefGoogle Scholar
Aja, S.U.. 1995a. Estimates of mineral dissolution rates: a semi-empirical approach. Prog. & Abstr. V.M. Goldschmidt Conf. p 24.Google Scholar
Aja, S.U.. 1995b. Thermodynamic properties of some 2: 1 layer clay minerals from solution-equilibration data. Eur J Miner 7: 325333.CrossRefGoogle Scholar
Aja, S.U.. 1995c. Controls on illitization: A thermodynamic approach. In: OTI MN. and POSTMA G, editors, Geology of Deltas. Rotterdam: Balkema Publishers. p 209215.Google Scholar
Aja, S.U. and Rosenberg, P.E.. 1992. The thermodynamic status of compositionally-variable clay minerals: A discussion. Clays & Clay Miner 40: 292299.CrossRefGoogle Scholar
Aja, S.U., Rosenberg, P.E. and Kittrick, J.A.. 1991a. Illite equilibria in solutions: II. Phase relationships in the system K2O-Al2O3-SiO2-H2O. Geochim Cosmochim Acta 55: 13531364.CrossRefGoogle Scholar
Aja, S.U., Rosenberg, P.E. and Kittrick, J.A.. 1991b. Illite equilibria in solutions: II. Phase relationships in the system K2O-Al2O3-MgO-SiO2-H2O. Geochim Cosmochim Acta 55: 13651374.CrossRefGoogle Scholar
Amouric, M. and Olives, J.. 1991. Illitization of smectite as seen by high-resolution transmission electron microscopy. Eur J Miner 3: 831835.CrossRefGoogle Scholar
Anderson, G.M. and Crerar, D.A.. 1993. Thermodynamics in Geochemistry: The equilibrium model. New York: Oxford University Press. 588 p.CrossRefGoogle Scholar
Broxton, D.E., Bish, D.L. and Warren, R.G.. 1987. Distribution and chemistry of diagenetic minerals at Yucca Mountain, Nye County, Nevada. Clays & Clay Miner 35: 89110.CrossRefGoogle Scholar
Chamley, H.. (1989) Clay sedimentology. Berlin: Springer-Verlag. 623 p.CrossRefGoogle Scholar
Essene, E.J. and Peacor, D.R.. 1995. Clay mineral thermometry: A critical perspective. Clays & Clay Miner. 43: 540553.CrossRefGoogle Scholar
Garrels, R.M.. 1984. Montmorillonite/illite stability diagrams. Clays & Clay Miner 32: 161166.CrossRefGoogle Scholar
Guthrie, G.D. Jr. and Veblen, D.R.. 1989. High-resolution transmission electron microscopy of mixed-layer illite/smectite: computer simulations. Clays & Clay Miner. 37: 111.CrossRefGoogle Scholar
Guthrie, G.D. Jr. and Veblen, D.R.. 1990. Interpreting one-dimensional high-resolution transmission electron micrographs of sheet silicates by computer simulation. Am Miner 75: 276288.Google Scholar
Hemingway, B.S. and Robie, R.A.. 1984. Thermodynamic properties of zeolites: low-temperature heat capacities and thermodynamic functions for phillipsite and clinoptilolite. Estimates of the thermochemical properties of zeolitic water at low temperature. Am Miner 69: 692700.Google Scholar
Hemley, J.J.. 1959. Some mineralogical equilibria in the system K2O-Al2O3-SiO2-H2O. Am J Sci 257: 241270.CrossRefGoogle Scholar
Hemley, J.J., Montoya, J.W., Marineko, J.W. and Luce, R.W.. 1980. Equilibria in the system Al2O3-SiO2-H2O and some general implications for alteration/mineralization processes. Econ Geol 25: 210228.CrossRefGoogle Scholar
Jiang, W.T., Peacor, D.R. and Essene, E.J.. 1990. Clay minerals in the MacAdams Sandstone, California: Implications for substitution of H3O+ and H2O and metastability of illite. Clays & Clay Min 41: 3545.Google Scholar
Kittrick, J.A.. 1983. Accuracy of several immiscible displacement liquids. Soil Sci Soc Am J 47: 10451047.CrossRefGoogle Scholar
Kittrick, J.A. and Peryea, F.J.. 1988. Experimental Validation of the monophase structure model for montmorillonite solubility. Soil Sci Soc Am J 52: 11991201.CrossRefGoogle Scholar
Kittrick, J.A. and Peryea, F.J.. 1989. The monophase model for Mg-saturated montmorillonite. Soil Sci Soc Am J 53: 292295.CrossRefGoogle Scholar
Klimentidis, R.E. and Mackinnon, I.D.R.. 1986. High-resolution electron microscopy of ordered mixed-layer clays. Clays & Clay Miner 34: 155164.CrossRefGoogle Scholar
Lippmann, F.. 1977. The solubility product of complex minerals, mixed-crystals and three layer clay minerals. N Jb Miner Abh 130: 243263.Google Scholar
Lippmann, F.. 1982. The thermodynamic status of clay minerals. Proc 7th Intl Clay Conf 1981, 475-485 p.Google Scholar
Lonker, S.W., Fitz Gerald, J.D., Hedenquist, J.W. and Walshe, J.W.. 1990. Mineral-fluid interactions in the Broadlands-Ohaaki Geothermal System, New Zealand. Am J Sci 290: 9951068.CrossRefGoogle Scholar
Macinnis, I.N., Ganor, J. and Lasaga, A.C.. 1995. Solubility and reaction kinetics of analcime and clinoptilolite at low temperatures. Prog and Abstr VM Goldschmidt Conf. p 66.Google Scholar
May, H.M., Kinniburgh, P.A., Helmke, P.A. and Jackson, M.L.. 1986. Aqueous dissolution, solubilities and thermodynamic stabilities of common aluminosilicate clay minerals: kaolinites and smectites. Geochim Cosmochim Acta 50: 16671677.CrossRefGoogle Scholar
McDowell, S.D. and Elders, W.. 1980. Authigenic layer silicate minerals in borehole Elmore #1, Salton Sea Geothermal Field, California. Contrib Mineral Petrol 74: 293310.CrossRefGoogle Scholar
McDowell, S.D. and Elders, W.. 1983. Allogenic layer silicate minerals in borehole Elmore #1, Salton Sea Geothermal Field, California. Am Miner 68: 11461159.Google Scholar
Montoya, J.W. and Hemley, J.J.. 1975. Activity relations and stabilities in alkali feldspar and mica alteration reactions. Econ Geol 70: 577594.CrossRefGoogle Scholar
Murphy, W.M., Prikryl, J.D. and Pabalan, R.T.. 1995. Reaction kinetics and reversibility of analcime dissolution at pH 9 and 25°C. EOS Trans. 76 (17), Spring Meet. Suppl. S102.Google Scholar
Nadeau, P.H., Wilson, M.J., McHardy, W.J. and Tait, J.M.. 1985. The conversion of smectite to illite during diagenesis: evidence from some illitic clays from bentonites and sandstones. Mineral Mag 49: 393400.CrossRefGoogle Scholar
Parks, G.A.. 1990. Surface energy and adsorption at mineral/water interfaces: an introduction. In: Hochella, M.F. Jr., White, A.F., editors. Mineral-Water Interface Geochemistry, Reviews in Mineralogy 23: 133176.CrossRefGoogle Scholar
Primmer, T.J.. 1994. Some comments on the chemistry and stability of interstratified illite-smectite and the role of Ostwald-type processes. Clay Miner 29: 6368.CrossRefGoogle Scholar
Primmer, T.J., Warren, E.A., Sharma, B.K. and Atkins, M.P.. 1993. Experimental studies of diagenesis and weathering. In: Manning, D.A.C., Hall, P.L., Hughes, C.R., editors. Geochemistry of clay-pore fluid interaction. The Mineralogical Society Series 4. London: Chapman and Hall. p 161180.Google Scholar
Putnis, A.. 1992. Introduction to mineral sciences. Cambridge: Cambridge University Press. 375 p.CrossRefGoogle Scholar
Rosenberg, P.E., Kittrick, J.A. and Aja, S.U.. 1990. Mixed-layer illite/smectite: a multi-phase model. Am Miner 75: 11821185.Google Scholar
Sass, B.M., Rosenberg, P.E. and Kittrick, J.A.. 1987. The stability of illite/smectite during diagenesis: an experimental study. Geochim Cosmochim Acta 51: 21032115.CrossRefGoogle Scholar
Srodon, J. and Eberl, D.D.. 1984. Illite In: Bailey SW, editor. Micas, Reviews in Mineralogy. 13: 495544.Google Scholar
Srodon, J., Elsass, F., McHardy, W.J. and Morgan, D.J.. 1992. Chemistry of illite-smectite inferred from TEM measurements of fundamental particles. Clay Mineral 27: 137158.CrossRefGoogle Scholar
Sverjensky, D.M., Hemley, J.J. and D'angelo, W.M.. 1991. Thermodynamic assessment of hydrothermal alkali feldspar-mica-aluminosilicate equilibria. Geochim Cosmochim Acta 55: 9891004.CrossRefGoogle Scholar
Vali, H., Hesse, R. and Köhler, E.E.. 1991. Combined freeze-etch replicas and HRTEM images as tools to study fundamental particles and multiphase nature of 2: 1 layer silicates. Am Miner 76: 19731984.Google Scholar
Vali, H., Hesse, R. and Martin, R.F.. 1994. A TEM-based definition of 2: 1 layer silicates and their interstratified constituents. Am Miner 79: 644653.Google Scholar
Veblen, D.R., Guthrie, G.D. Jr, Livi, K.J.T. and Reynolds, R.C. Jr. 1990. High-resolution transmission electron microscopy and electron diffraction of mixed-layer illite/smectite: experimental results. Clays & Clay Miner 38: 143.CrossRefGoogle Scholar
Warren, E.A. and Curtis, C.D.. 1989. The chemical composition of authigenic illite within two sandstone reservoirs as analyzed by ATEM. Clay Miner 24: 137156.CrossRefGoogle Scholar
Wilkin, R.T. and Barnes, H.L.. 1995. Solubilities of the zeolites analcime and Na-clinoptilolite at low temperatures. Prog & Abstr VM Goldschmidt Conference. 97 p.Google Scholar
Yates, D.M.. 1993. Experimental investigation of the formation and stability of endmember illite from 100 to 250°C and Pv,H2O. [PhD thesis]. Pullman, Washington: Washington State University. 224 p.Google Scholar
Yates, D.M. and Rosenberg, P.E.. 1993. Hydrothermal transformation of muscovite to endmember illite at 250°C and Pv,H2O. Geol Soc Am Abst with Prog 25. p 437.Google Scholar
Yates, D.M. and Rosenberg, P.E.. 199. Formation of end-member illite: revised multi-phase model. Prog and Abstr VM. Goldschmidt Conference. p 99.Google Scholar
Yau, Y.C., Peacor, D.R., Beane, R.E., Essene, E.J. and McDowell, S.D.. 1987. Microstructure, formation mechanisms, and depth-zoning of phyllosilicates in geothermally altered shales, Salton Sea, California. Clays & Clay Miner 36: 110.Google Scholar