Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-21T23:04:07.164Z Has data issue: false hasContentIssue false

Testing High-Voltage Electrical Discharges in Disintegrating Claystone for Isotopic and Mineralogical Studies: An Example Using Opalinus Claystone

Published online by Cambridge University Press:  01 January 2024

Horst Zwingmann*
Affiliation:
Division of Earth and Planetary Sciences, Graduate School of Science, Kyot University, Sakyo-ku, Kyoto 606-8502, Japan
Alfons Berger
Affiliation:
Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, 3012, Bern, Switzerland
Urs Eggenberger
Affiliation:
Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, 3012, Bern, Switzerland
Andrew Todd
Affiliation:
CSIRO Energy, 26 Dick Perry Ave, Kensington, WA 6151, Australia
Marco Herwegh
Affiliation:
Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, 3012, Bern, Switzerland
*
*E-mail address of corresponding author: horst@kueps.kyoto-u.ac.jp

Abstract

The radiogenic isotope systematics of clay minerals are complex because of the intimate mixture of minerals from different origins such as detrital and authigenic sources. An important aspect of dating clays is the primary sample preparation and disintegration method. In the present study, a sample of weakly deformed Opalinus claystone from the Mont Terri underground site (Switzerland) was investigated after disintegration by three different methods. The Opalinus Clay was sedimented in the late Toarcian and early Aalenian and reached maximum temperatures of ~85°C during burial in the Cretaceous. The present study reports data from a comprehensive investigation comparing the effects of disintegration by: (1) disc milling; (2) repeated freezing and thawing; and (3) high-voltage discharges. K-Ar age values of the finest clay (<0.1 µm) released by the different disintegration methods are indistinguishable, indicating that the high-voltage liberation method does not influence grains as small as 100 nm. The K-Ar age values of particle-size separates decreased with decreasing particle size. The age values of the 2–6 µm separates correspond to the Carboniferous Period, which reflects the dominance of Paleozoic detritus in that size range. The age values of the smallest separates (<0.1 µm), on average 213 ± 4 Ma, exceed the numerical age of the formation (~177−172 Ma), which show predominance of detrital grains over authigenic grains even in the finest illite. In summary, isotope geochronology data suggest that the high-voltage method can be applied reliably for disintegrating claystones.

Type
Article
Copyright
Copyright © Clay Minerals Society 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, T., 1997 Particle Size Measurement, Volumes 1 and 2 5th edition London Chapman & Hall, e-book 525.Google Scholar
Allia, V., 1996 Sedimentologie und Ablagerungsgeschichte des Opalinustons in der Nordschweiz PhD dissertation Switzerland Geologisch-Paläontologisches Institut, University of Basel.Google Scholar
Andres, U. Jirestig, J. and Timoshkin, I., 1999 Liberation of minerals by high-voltage electrical pulses Powder Technology 104 3749.CrossRefGoogle Scholar
Becker, A., 2000 The Jura Mountains — an active foreland fold-and-thrust belt? Tectonophysics 321 381406.CrossRefGoogle Scholar
Bluhm, H. Frey, W. Giese, H. Hoppé, P. Schultheiß, C. and Sträßner, R., 2000 Application of pulsed HV discharges to material fragmentation and recycling IEEE Transactions on Dielectrics and Electrical Insulation 7 625636.CrossRefGoogle Scholar
Bonhomme, M.G. Thuizat, R. Pinault, Y. Clauer, N. Wendling, R. and Winkler, R., 1975 Note technique de l’Institut de Géologie 3 Méthode de datation potassium-argon. Appareillage et technique France Université Strasbourg 53.Google Scholar
Bossart, P. Bernier, F. Birkholzer, J. Bruggeman, C. Connolly, P. Dewonck, S. Fukaya, M. Herfort, M. Jensen, M. Matray, J.-M. Mayor, J.-C. Moeri, A. Oyama, T. Schuster, K. Shigeta, N. Vietor, T. and Wieczorek, K., 2017 Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments Swiss Journal of Geosciences 110 1 322.CrossRefGoogle Scholar
Clauer, N. and Chaudhuri, S., 1995 Clays in Crustal Environments: Isotope Dating and Tracing Berlin Springer-Verlag 359.CrossRefGoogle Scholar
Clauer, N. Cocker, J.D. Chaudhuri, S., Houseknecht, D.W. and Pittman, E.D., 1992 Isotopic dating of diagenetic illites in reservoir sandstones: influence of the investigator effect Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones Tulsa, Oklahoma, USA Society for Sedimentary Geology 512.CrossRefGoogle Scholar
Coelho, A.A., 2012 TOPAS Academic Version 5 Brisbane, Australia Coelho Software.Google Scholar
Cohen, K.M. Finney, S.C. Gibbard, P.L. and Fan, J.-X., 2013 The ICS International Chronostratigraphic Chart Episodes 36 199204.CrossRefGoogle Scholar
Dalrymple, G.B. and Lanphere, M.A., 1969 Potassium-Argon Dating: Principles, Techniques and Applications to Geochronology San Francisco, California, USA W.H. Freeman and Company 258.Google Scholar
Giese, J. Seward, D. Stuart, F.M. Wüthrich, E. Gnos, E. Kurz, D. Eggenberger, U. and Schreurs, G., 2009 Electrodynamic disaggregation: does it affect apatite fission-track and (U-Th)/He analyses? Geostandards and Geoanalytical Research 34 3948.CrossRefGoogle Scholar
Gnos, E. Kurz, D. Leya, I. and Eggenberger, U., 2007 Electrodynamic disaggregation of geologic material Geochimica and Cosmochimica Acta 71 A331.Google Scholar
Hostettler, B. Reisdorf, A.G. Jaeggi, D. Deplazes, G. Bläsi, H. Morard, A. Feist-Burkhardt, S. Waltschew, A. Dietze, V. and Menkveld-Gfeller, U., 2017 Litho- and biostratigraphy of the Opalinus Clay and bounding formations in the Mont Terri rock laboratory (Switzerland) Swiss Journal of Geosciences 110 2337.CrossRefGoogle Scholar
Hurley, P.M. Brookins, D.G. Pinson, W.H. Hart, S.R. and Fairbairn, H.W., 1961 K-Ar age studies of Mississippi and other river sediments Geological Society of America Bulletin 72 18071816.CrossRefGoogle Scholar
Jackson, M.L., 1979 Soil Chemical Analysis—Advanced Course second edition 895.Google Scholar
Lerouge, C. Grangeon, S. Claret, F. Gaucher, E. Blanc, P. Guerrot, C. Flehoc, C. Wille, G. and Mazurek, M., 2014 Mineralogical and isotopic record of diagenesis from the Opalinus Clay formation at Benken, Switzerland: Implications for the modeling of pore-water chemistry in a clay formation Clays and Clay Minerals 62 286312.CrossRefGoogle Scholar
Liewig, N. Clauer, N. and Sommer, F., 1987 Rb-Sr and K-Ar dating of clay diagenesis in Jurassic sandstone oil reservoir, North Sea AAPG Bulletin 71 14671474.Google Scholar
Mäder, U. Jenni, A. Lerouge, C. Gaboreau, S. Miyoshi, S. Kimura, Y. Cloet, V. Fukaya, M. Claret, F. Otake, T. Shibata, M. and Lothenbach, B., 2017 5-year chemico-physical evolution of concrete-claystone interfaces, Mont Terri rock laboratory (Switzerland) Swiss Journal of Geosciences 110 307327.CrossRefGoogle Scholar
Mazurek, M. Hurford, A.J. and Leu, W., 2006 Unravelling the multi-stage burial history of the Swiss Molasse Basin: integration of apatite fission track, vitrinite reflectance and biomarker isomerisation analysis Basin Research 18 2750.CrossRefGoogle Scholar
McDougall, I. and Roksandic, Z., 1974 Total fusion 40Ar/39Ar ages using HIFAR reactor Journal of the Geological Society of Australia 21 8189.CrossRefGoogle Scholar
McDougall, I. and Harrison, T.M., 1999 Geochronology and Thermochronology by the 40Ar/39Ar Method 2nd edition Oxford, UK Oxford University Press 269.CrossRefGoogle Scholar
Meunier, A. Velde, B. and Zalba, P., 2004 Illite K-Ar dating and crystal growth processes in diagenetic environments: a critical review Terra Nova 16 296304.CrossRefGoogle Scholar
Moore, D.M. Reynolds, R.C. Jr., 1997 X-ray Diffraction and the Identification and Analysis of Clay Minerals 2nd edition Oxford, UK Oxford University Press 378.Google Scholar
Nussbaum, C. Bossart, P. Amann, F. and Aubourg, C., 2011 Analysis of tectonic structures and excavation induced fractures in the Opalinus Clay, Mont Terri underground rock laboratory (Switzerland) Swiss Journal of Geosciences 104 187210.CrossRefGoogle Scholar
O’Connor, B.H. and Chang, W.J., 1986 The amorphous character and particle size distribution of powders produced with the Micronizing Mill for quantitative x-ray powder diffraction X-ray Spectrometry 15 267270.CrossRefGoogle Scholar
Schaltegger, U. Zwingmann, H. Clauer, N. Larqué, P. and Stille, P., 1995 K-Ar dating of a Mesozoic hydrothermal activity in Carboniferous to Triassic clay minerals of northern Switzerland Schweizerische Mineralogische und Petrographische Mitteilungen 75 163176.Google Scholar
Sperner, B. Jonckheere, R. and Pfänder, J.A., 2014 Testing the influence of high-voltage mineral liberation on grain size, shape and yield, and on fission track and 40Ar/39Ar dating Chemical Geology 371 8395.CrossRefGoogle Scholar
Steiger, R.H. and Jäger, E., 1977 Subcommission on Geochronology: convention on the use of decay constants in geo- and cosmochronology Earth and Planetary Science Letters 36 359362.CrossRefGoogle Scholar
Techer, I. Clauer, N. and Liewig, N., 2009 Ageing effect on the mineral and chemical composition of Opalinus Clays (Mont Terri, Switzerland) after excavation and surface storage Applied Geochemistry 24 20002014.CrossRefGoogle Scholar
Wetzel, A. and Allia, V., 2000 The significance of hiatus beds in shallow-water mudstones: an example from the Middle Jurassic of Switzerland Journal of Sedimentary Research 70 170180.CrossRefGoogle Scholar
Whitney, D.L. and Evans, B.W., 2010 Abbreviations for names of rock-forming minerals American Mineralogist 95 185187.CrossRefGoogle Scholar
Zwingmann, H., 1995 Study of the conditions of gas emplacement in sandstone reservoirs (Rotliegend of Germany). Mineralogical, morphological, geochemical and isotopical aspects PhD thesis France Université Louis Pasteur Strasbourg 196.Google Scholar
Zwingmann, H., Rink, R.W. and Thompson, J.W., 2014 K-Ar/40Ar/39Ar dating — Clays and Glauconites Encyclopedia of Scientific Dating Methods Berlin-Heidelberg Springer 171176.Google Scholar