Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T13:30:09.924Z Has data issue: false hasContentIssue false

Synthesis of Zeolites from A Low-Quality Colombian Kaolin

Published online by Cambridge University Press:  01 January 2024

Mónica A. Villaquirán-Caicedo*
Affiliation:
School of Materials Engineering, Composites Materials Group, Universidad del Valle, A.A 25360, Cali, Colombia
Ruby M. De Gutiérrez*
Affiliation:
School of Materials Engineering, Composites Materials Group, Universidad del Valle, A.A 25360, Cali, Colombia
Marisol Gordillo
Affiliation:
Faculty of Sciences, Universidad Autónoma de Occidente, A.A 2790, Cali, Colombia
Nidia C. Gallego
Affiliation:
Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831-6087, USA

Abstract

At present, no production of zeolites is ongoing in Colombia; thus, because of the high demand in the industrial sector, ~2500 tons is imported annually from other countries such as Cuba, Ecuador, Mexico, and the United States. In order minimize the need for these costly imports, the present study sought to evaluate the viability of producing low-silica zeolites through the hydrothermal synthesis of a Colombian kaolin, which contains quartz (40%) and iron-oxide impurities. The kaolin was subjected to a milling process to reduce the particle size to the order of 11 μm, and was heat treated to transform it to metakaolin. Optimization of the synthesis variables (Na2O/SiO2 and H2O/Al2O3 ratios, time, and temperature) was accomplished by applying an experimental design based on the ‘Response Surface Methodology’ technique. The degree of crystallinity and the cation exchange capacity (CEC) were used as response variables. The CEC was determined from the NTC 5167 standard. In addition, the mineralogical composition and the zeolite microstructure were evaluated using techniques such as scanning electron microscopy, X-ray diffraction, and solid state nuclear magnetic resonance spectroscopy. The results indicated that synthetic type A zeolites with a CEC value of 442 cmol(+)/kg can be obtained from the Colombian kaolin, with the following optimal processing conditions: Na2O/SiO2 molar ratio of 2.7, H2O/Al2O3 molar ratio of 150, temperature = 66°C, and processing time = 8 h. Note that this value (442 cmol(+)/kg) is greater than that reported for an imported commercial zeolite (408 cmol(+)/kg) of the same type, which is currently being used in industry in Colombia. The nationwide availability of the raw material and the quality of the final product present opportunities to make this material available to the Colombian market.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akolekar, D. Chafee, A. and Howe, R.F., 1997 The transformation of kaolin to low-silica X zeolite Zeolites 19 359–265.CrossRefGoogle Scholar
ASTM D5357-03 (2013) Standard test method for determination of relative crystallinity of zeolite sodium A by X-ray Diffraction.Google Scholar
Bobos, I. Duplay, J. Rocha, J. and Gomez, C., 2001 Kaolinite to halloysite 7 Å transformation in the kaolin deposit of Sao Vicente de Pereira, Portugal Clays and Clay Minerals 49 596607.CrossRefGoogle Scholar
Chandrasekhar, S. and Pramada, P.N., 1999 Investigation on the synthesis of zeolite NaX from Kerala kaolin Journal of Porous Materials 6 283297.CrossRefGoogle Scholar
Chandrasekhar, S. and Pramada, P.N., 2008 Microwave assisted synthesis of zeolite A from metakaolin Microporous and Mesoporous Materials 108 152161.CrossRefGoogle Scholar
Chandrasekhar, S. and Pramada, P.N., 2001 Sintering behavior of calcium exchanged low silica zeolites synthesized from kaolin Ceramics International 27 105114.CrossRefGoogle Scholar
Chandrasekhar, S. and Pramada, P.N., 2004 Kaolin based zeolite Y, a precursor for cordierite ceramics Applied Clay Science 27 187198.CrossRefGoogle Scholar
Chandrasekhar, S. Raghavan, P. Sebastian, G. and Damodaran, A.D., 1997 Brightness improvement studies on “kaolin based” zeolite 4A Applied Clay Science 12 221231.CrossRefGoogle Scholar
Chunfeng, W. Jiansheng, L. Xia, S. Lianjun, W. and Xiuyun, S., 2009 Evaluation of zeolites synthesized from fly ash as potential adsorbents for wastewater containing heavy metals Journal of Environmental Sciences 21 127–36.Google Scholar
Covarrubias, C. García, R. Arriagada, R. Yánez, J. and Garland, M., 2006 Cr(III) exchange on zeolites obtained from kaolin and natural mordenite Microporous and Mesoporous Materials 88 220231.CrossRefGoogle Scholar
Covian-Sanchez, I., 1991 Síntesis de zeolitas 13X para uso en detergentes Madrid Universidad Complutense de Madrid 305.Google Scholar
Kuznicki, S.M. Lin, C.C. Wu, L. Yin, H. Danaie, M. and Mitlin, D., 2008 The synthesis of a platy chabazite analog from delaminated metakaolin with the ability to surface template nanosilver particulates Clays and Clay Minerals 56 655659.CrossRefGoogle Scholar
Mejía de Gutiérrez, R. and Torres, J., 2003 Puzolana obtenida por activación térmica Memorias III Jornadas Iberoamericanas de Materiales de Construcción, Red Iberoamericana de Rocas y Minerales Industriales, XIII-C - CYTED, San Juan, Argentina 2529.Google Scholar
Mendez, I., 1980)editor (Metodología de Superficie de Respuesta. Instituto de Investigaciones en Matemaáticas Aplicadas y en Sistemas, UNAM, Mexico D.F., Mexico, pp. 1517.Google Scholar
Miao, Q. Zhou, Z. Yang, J. Lu, J. Yan, S. and Wang, J., 2009 Synthesis of NaA zeolite from kaolin source Frontiers of Chemical Engineering China 3 811.CrossRefGoogle Scholar
Mignoni, M. Petkowicz, D.I. Fernandes, N. and Sibele, B.C., 2008 Synthesis of mordenite using kaolin as Si and Al source Applied Clay Science 41 99104.CrossRefGoogle Scholar
Myers, R.H. Montgomery, D.C. and Anderson-Cook, C.M., 2009.Response Surface Methodology: Process and Product Optimization using Designed ExperimentsGoogle Scholar
Novembre, D. Sabatino, B. and Gimeno, D., 2005 Synthesis of Na-A zeolite from 10 Å halloysite and new crystallization kinetic model for the transformation of Na-A into HS zeolite Clays and Clay Minerals 53 2836.CrossRefGoogle Scholar
NTC 5167 (2004) Productos para la industria agrícola, productos orgánicos usados como abonos y fertilizantes y enmiendas del suelo. Icontec, Colombia.Google Scholar
Park, J. Chan, B. Soo, S. and Chan, H., 2001 Conventional versus ultrasonic synthesis of zeolite 4A from kaolin Journal of Materials Science Letters 20 531533.CrossRefGoogle Scholar
Pavlov, M.L. Travkina, O.S. Basimova, R.A. Pavlova, I.N. and Kutepov, B.I., 2009 Binder-free synthesis of highperformance zeolites A and X from kaolin Petroleum 49 3641.Google Scholar
Restrepo, G.M. and Ocampo, G.A., 1996 Sustitución de polifosfatos por zeolitas en detergentes Revista Facultad Ingeniería Química Universidad de Antioquia 13 1520.Google Scholar
Ríos, C.A. and Denver, C.W., 2010 Hydrothermal transformation of kaolinite in the system K2O-SiO2-Al2O3-H2O DYNA 77 5563.Google Scholar
Ríos, C.A. and Williams, C.D., 2008 Synthesis of zeolitic materials from natural clinker: A new alternative for recycling coal combustion by-products Fuel 87 24822492.CrossRefGoogle Scholar
Ríos, C.A. Williams, C.D. and Castellanos, O.M., 2006 Síntesis y caracterizacioón de zeolitas a partir de la activación alcalina de caolinita y subproductos industriales (cenizas volantes y clincker natural) en soluciones alcalinas BISTUA 4 6071.Google Scholar
Ríos, C.A. Denver, C.W. and Castellanos, O.M., 2010 Synthesis of zeolite LTA from thermally treated kaolinite Revista Facultad de Ingenieria Universidad de Antioquia 53 3041.Google Scholar
Rocha, J. and Klinowski, J., 1990 29Si and 27Al magic-anglespinning NMR studies of the thermal transformation of kaolinite Physics and Chemistry of Minerals 17 179186.CrossRefGoogle Scholar
San Cristóbal, A.G. Castelló, R. Luengo, M.A. and Vizcayno, C., 2010 Zeolites prepared from calcined and mechanically modified kaolins a comparative study Applied Clay Science 49 239246.CrossRefGoogle Scholar
Schneider, J. Cincotto, M.A. and Panepucci, H., 2001 29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes Cement and Concrete Research 31 9931001.CrossRefGoogle Scholar
Instruments, T.A. (2001) The software universal analysis. .Google Scholar
Tavasoli, M. Kazemian, H. Sadjadi, S. and Tamizifar, M., 2014 Synthesis and characterization of zeolite NaY using kaolin with different synthesis methods Clay and Clays Minerals 62 508518.CrossRefGoogle Scholar
Thompson, J.G. and Barron, P.F., 1987 Further consideration of the 29Si nuclear magnetic resonance spectrum of kaolinite Clays and Clay Minerals 35 3842.CrossRefGoogle Scholar
Torres, J. Mejia de Gutiérrez, R. Castelló, R. and Vizcayno, C., 2011 Análisis comparativo de caolines de diferentes fuentes para la producción de metacaolin Revista Latinoamericana de Metalurgia y Materiales 31 3543.Google Scholar
Zhao, H. Deng, Y. Harsh, J.B. Markus, F. and Boyle, J.S., 2004 Alteration of kaolinite to cancrinite and sodalite by simulated Hanford tank waste: Its impact on cesium retention Clays and Clay Minerals 52 113.CrossRefGoogle Scholar