Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T18:49:29.473Z Has data issue: false hasContentIssue false

Synthesis of Smectite Clay Minerals: A Critical Review

Published online by Cambridge University Press:  28 February 2024

J. Theo Kloprogge
Affiliation:
Centre for Instrumental and Developmental Chemistry, Queensland University of Technology, Brisbane, GPO Box 2434, Queensland 4001, Australia
Sridhar Komarneni
Affiliation:
Intercollege Materials Research Laboratory and Department of Agronomy, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
James E. Amonette
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999 K8-96, Richland, Washington 99352, USA

Abstract

Smectites are one of the most important groups of phyllosilicates found in soils and sediments, and certainly one of the most difficult to study. New information about the formation mechanisms, impact of structural features on surface properties, and long-term stability of smectites can best be gained from the systematic study of single-phase specimens. In most instances, these specimens can only be obtained through synthesis under controlled conditions. Syntheses of smectites have been attempted (1) at ambient pressure and low-temperature (<100°C), (2) under moderate hydrothermal conditions (100–1000°C, pressures to several kbars), (3) under extreme hydrothermal conditions (>1000°C or pressures >10 kbars), and (4) in the presence of fluoride. Of these approaches, syntheses performed under moderate hydrothermal conditions are the most numerous and the most successful in terms of smectite yield and phase-purity. Using hydrothermal techniques, high phase-purity can be obtained for beidellites and several transition-metal smectites. However, synthesis of montmorillonite in high purity remains difficult. Starting materials for hydrothermal syntheses include gels, glasses, and other aluminosilicate minerals. The presence of Mg2+ seems to be essential for the formation of smectites, even for phases such as montmorillonite which contain low amounts of Mg. Highly crystalline smectites can be obtained when extreme temperatures or pressures are used, but other crystalline impurities are always present. Although the correlation between synthesis stability fields and thermodynamic stability fields is good in many instances, metastable phases are often formed. Few studies, however, include the additional experiments (approach from under-and over-saturation, reversal experiments) needed to ascertain the conditions for formation of thermody-namically stable phases. Thorough characterization of synthetic products by modern instrumental and molecular-scale techniques is also needed to better understand the processes leading to smectite formation.

Type
Review Article
Copyright
Copyright © 1999, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ames, L.L. and Sand, L.B., 1958 Factors effecting maximum hydrothermal stability in montmorillonites American Mineralogist 43 641648.Google Scholar
Bai, T.-B. Guggenheim, S. Wang, S.-J. Rancourt, D.G. and van Koster Groos, A.F., 1993 Metastable phase relations in the chlorite-H2O system American Mineralogist 78 12081216.Google Scholar
Bailey, S.W., Brindley, G.W. and Brown, G., 1980 Structures of layer silicates Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society 1124.Google Scholar
Baird, T. Cairns-Smith, A.G. MacKenzie, D.W. and Snell, D., 1971 Electron microscope studies of synthetic hectorite Clay Minerals 9 250252 10.1180/claymin.1971.009.2.10.CrossRefGoogle Scholar
Baird, T. Cairns-Smith, A.G. and MacKenzie, D.W., 1973 An electron microscope study of magnesium smectite synthesis Clay Minerals 10 1726 10.1180/claymin.1973.010.1.02.CrossRefGoogle Scholar
Barrer, R.M. and Jones, D.L., 1970 Chemistry of soil minerals. Part VIII. Synthesis and properties of fluorhectorites Journal of the Chemical Society (A) 15311537.CrossRefGoogle Scholar
Biggar, G.M. and Ohara, M.J., 1969 A comparison of gel and glass starting materials for phase equilibrium studies Mineralogical Magazine 37 198205 10.1180/minmag.1969.037.286.06.CrossRefGoogle Scholar
Booij, E., 1992 A characterization study of smectites with and without tetrahedral substitutions, pillared with hydroxy-Al and hydroxy-Ga polymers Utrecht, The Netherlands University of Utrecht.Google Scholar
Borchardt, G., Dixon, J.B. and Weed, S.B., 1989 Smectites Minerals in Soil Environments 2nd edition Madison, Wisconsin Soil Science Society of America 675727.Google Scholar
Brat, S., 1985 Synthetic magnesium-aluminum-sodium silicate in radioactive waste treatment Indian Journal of Technology 23 345347.Google Scholar
Brat, S. and Rajan, N.S.S., 1981 Synthetic magnesium aluminosilicates in radioactive waste treatment Indian Journal of Chemistry 20A 311312.Google Scholar
Breukelaar, J. Kellendonk, F.J.A. and van Santen, R.A., 1989 A process for the manufacture of synthetic saponites European Patent 317,006. Date Issued: 24 May .Google Scholar
Breukelaar, J. van Santen, R.A. and De Winter, A.W., 1990 Synthetic saponite-derivatives, a method for preparing such saponites and their use in catalytic (hydro)conversions European Patent 398,429. Date Issued: 22 November .Google Scholar
Brindley, G.W., Brindley, G.W. and Brown, G., 1980 Order and disorder in clay mineral structures Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society 125195.CrossRefGoogle Scholar
Bruce, L.A. Sanders, J.V. and Turney, T.W., 1986 Hydro-thermal synthesis and characterization of cobalt clays Clays and Clay Minerals 34 2536 10.1346/CCMN.1986.0340104.CrossRefGoogle Scholar
Caillère, S. Henin, S. and Esquevin, J., 1953 Synthèses à basse tempèrature de phyllite ferrifère Comptes Rendus de l’Academie Sciences (Paris) 237 17241726.Google Scholar
Caillère, S. Oberlin, A. and Henin, S., 1954 Etude au microscope electronique de quelques silicates phylliteux obtenus par synthèses à basse température Clay Minerals Bulletin 2 146156 10.1180/claymin.1954.002.12.05.CrossRefGoogle Scholar
Caillère, S. Henin, S. and Esquevin, J., 1955 Synthèses à basse tempèrature de quelque minèraux ferrifère (silicates et oxydes) Bulletin de la Societe Francaise de Mineralogie et Cristallographie 78 227241 10.3406/bulmi.1955.5000.CrossRefGoogle Scholar
Capell, R.G. and Granquist, W.T., 1966 Cracking catalyst and process of cracking US Patent 3,252,889. Date Issued: 24 May .Google Scholar
Carrado, K.A., 1992 Preparation of hectorite clays utilizing organic and organometallic complexes during hydrothermal crystallization Industrial and Engineering Chemistry Research 31 16541659 10.1021/ie00007a011.CrossRefGoogle Scholar
Carrado, K.A. Thiyagarajan, P. Winans, R.E. and Botto, R.E., 1991 Hydrothermal crystallization of porphyrin-containing layer silicates Inorganic Chemistry 30 794799 10.1021/ic00004a034.CrossRefGoogle Scholar
Carrado, K.A. Thiyagarajan, P. and Elder, D.L., 1996 Polyvinyl alcohol-clay complexes formed by direct synthesis Clays and Clay Minerals 44 506514 10.1346/CCMN.1996.0440409.CrossRefGoogle Scholar
Carrado, K.A. Thiyagarajan, P. Elder, D.L., Occelli, M.L. and Kessler, H., 1997 Porous networks derived from synthetic polymer-clay complexes Synthesis of Porous Materials: Zeolites, Clays, and Nanostructures New York Marcel Dekker 551566.Google Scholar
Carrado, K.A. Thiyagarajan, P. and Song, K., 1997 A study of organo-hectorite clay crystallization Clay Minerals 32 2940 10.1180/claymin.1997.032.1.05.CrossRefGoogle Scholar
Cohen, E. Dudeney, A.W.L. and Shaw, R., 1980 Synthesis of clay-like materials UK Patent 1,560,504. Date Issued: 6 February .Google Scholar
De Kimpe, C.R., 1976 Formation of phyllosilicates and zeolites from pure silica-alumina gels Clays and Clay Minerals 24 200207 10.1346/CCMN.1976.0240408.CrossRefGoogle Scholar
Decarreau, A., 1980 Cristallogènese expérimentale des smectites magnésiennes: Hectorite, stévensite Bulletin de Mineralogie 103 579590.CrossRefGoogle Scholar
Decarreau, A., 1985 Partitioning of divalent elements between octahedral sheets of trioctahedral smectites and water Geochimica et Cosmochimica Acta 49 15371544 10.1016/0016-7037(85)90258-3.CrossRefGoogle Scholar
Decarreau, A. and Bonnin, D., 1986 Synthesis and crystal-logenesis at low temperature of Fe(III)-smectites by evolution of coprecipitated gels: Experiments in partially reducing conditions Clay Minerals 21 861877 10.1180/claymin.1986.021.5.02.CrossRefGoogle Scholar
Decarreau, A. Bonnin, D. Badaut-Trauth, D. Couty, R. and Kaiser, P., 1987 Synthesis and crystallogenesis of ferric smectite by evolution of Si-Fe coprecipitates in oxidizing conditions Clays and Clay Minerals 22 207223 10.1180/claymin.1987.022.2.09.CrossRefGoogle Scholar
Decarreau, A. Grauby, O. and Petit, S., 1992 The actual distribution of octahedral cations in 2:1 clay minerals: Results from clay synthesis Applied Clay Science 7 147167 10.1016/0169-1317(92)90036-M.CrossRefGoogle Scholar
Eberl, D., 1978 Reaction series for dioctahedral smectites Clays and Clay Minerals 26 327340 10.1346/CCMN.1978.0260503.CrossRefGoogle Scholar
Eberl, D. and Hower, J., 1977 The hydrothermal transformation of sodium and potassium smectite into mixed-layer clay Clays and Clay Minerals 25 215227 10.1346/CCMN.1977.0250308.CrossRefGoogle Scholar
Esquevin, J., 1960 Les silicates de zinc. Etude de produits de synthese Annales Agronomiques 11 497556.Google Scholar
Ewell, R.H. and Insley, H., 1935 Hydrothermal synthesis of kaolinite, dickite, beidellite and nontronite Journal of Research of the National Bureau of Standards 15 173186 10.6028/jres.015.006.CrossRefGoogle Scholar
Farmer, V.C., 1997 Conversion of ferruginous allophanes to ferruginous beidellites at 95 °C under alkaline conditions with alternating oxidation and reduction Clays and Clay Minerals 45 591597 10.1346/CCMN.1997.0450411.CrossRefGoogle Scholar
Farmer, V.C. Krishnamurti, G.S.R. and Huang, P.M., 1991 Synthetic allophane and layer-silicate formation in SiO2-Al2O3-FeO-Fe2O3-MgO-H2O systems at 23°C and 89°C in a calcareous environment Clays and Clay Minerals 39 561570 10.1346/CCMN.1991.0390601.CrossRefGoogle Scholar
Farmer, V.C. McHardy, W.J. Elsass, F. and Robert, M., 1994 hk-Ordering in aluminous nontronite and saponite synthesized near 90°C: Effects of synthesis conditions on nontronite composition and ordering Clays and Clay Minerals 42 180186 10.1346/CCMN.1994.0420208.CrossRefGoogle Scholar
Foster, M., 1960 Interpretation of the composition of trioctahedral micas US Geological Survey Professional Paper 354B 1149.Google Scholar
Fowden, L., Barrer, R.M. and Tinker, P.B., eds. (1984) Clay Minerals: Their Structure, Behaviour and Use. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 311, 219432.Google Scholar
Frank-Kamenetzkii, V.A. Kotov, N.V. and Tomashenko, A.N., 1973 The role of AlIV and AlVI in transformation and synthesis of layer silicates Kristall und Technik 8 425435 10.1002/crat.19730080404.CrossRefGoogle Scholar
Frank-Kamenetskii, V.A. Kotov, N.V. and Tomashenko, A.N., 1973 The role of AlIV (tetrahedral) and AlVI (octahedral) in layer silicate synthesis and alteration Geokhimiya 8 11531162.Google Scholar
Franzen, P. and van Eyk van Voorthuijsen, J.J.B., 1950 Synthesis of nickel hydrosilicates Transactions of the 4th International Congress of Soil Science (Amsterdam) 3 3437.Google Scholar
Gaaf, J. van Santen, R.A. Knoester, A. and van Wingerden, B., 1983 Synthesis and catalytic properties of pillared nickel substituted mica montmorillonite clays Journal of the Chemical Society, Chemical Communications 1983 655657 10.1039/c39830000655.CrossRefGoogle Scholar
Giese, R.F. Jr., 1975 Interlayer bonding in talc and pyrophyllite Clays and Clay Minerals 23 165166 10.1346/CCMN.1975.0230218.CrossRefGoogle Scholar
Golden, D.C. and Dixon, J.B., 1990 Low-temperature alteration of palygorskite to smectite Clays and Clay Minerals 38 401408 10.1346/CCMN.1990.0380409.CrossRefGoogle Scholar
Golden, D.C. Dixon, J.B. Shadfan, H. and Kippenberger, L.A., 1985 Palygorskite and sepiolite alteration to smectite under alkaline conditions Clays and Clay Minerals 33 4450 10.1346/CCMN.1985.0330105.CrossRefGoogle Scholar
Granquist, W.T., 1966 Synthetic silicate minerals US Patent 3,252,757. Date Issued: 24 May .Google Scholar
Granquist, W.T. and Pollack, S.S., 1960 A study of the synthesis of hectorite Clays and Clay Minerals 8 150169 10.1346/CCMN.1959.0080115.CrossRefGoogle Scholar
Granquist, W.T. and Pollack, S.S., 1967 Clay mineral synthesis-II. A randomly interstratified aluminian montmorillonoid American Mineralogist 52 212226.Google Scholar
Granquist, W.T. Hoffman, G.W. and Boteler, R.C., 1972 Clay mineral synthesis-Ill. Rapid hydrothermal crystallization of an aluminian smectite Clays and Clay Minerals 20 323329 10.1346/CCMN.1972.0200509.CrossRefGoogle Scholar
Grauby, O. Petit, S. Decarreau, A. and Baronnet, A., 1993 The beidellite-saponite series: An experimental approach European Journal of Mineralogy 5 623635 10.1127/ejm/5/4/0623.CrossRefGoogle Scholar
Grauby, O. Petit, S. Decarreau, A. and Baronnet, A., 1994 The nontronite-saponite series: An experimental approach European Journal of Mineralogy 6 99112 10.1127/ejm/6/1/0099.CrossRefGoogle Scholar
Green, J.M. Mackenzie, K.J.D. and Sharp, J.H., 1970 Thermal reactions of synthetic hectorite Clays and Clay Minerals 18 339346 10.1346/CCMN.1970.0180606.CrossRefGoogle Scholar
Gregar, K.A. Winans, R.E. and Botto, R.E., 1994 Organic or organometallic template mediated clay synthesis US Patent 5,308,808. Date Issued: 3 May .Google Scholar
Güven, N. and Bailey, S.W., 1988 Smectites Hydrous Phyllosilicates (Exclusive of Micas), Reviews in Mineralogy, Volume 19 Washington, D.C. Mineralogical Society of America 497559 10.1515/9781501508998-018.CrossRefGoogle Scholar
Hamilton, D.L. and Henderson, C.M.B., 1968 The preparation of silicate compositions by a gelling method Mineralogical Magazine 36 832838 10.1180/minmag.1968.036.282.11.CrossRefGoogle Scholar
Hamilton, G. and Furtwängler, W., 1951 Synthese von Nontronit Tschermaks Mineralogische und Petrographische Mitteilungen 2 397406 10.1007/BF01135289.CrossRefGoogle Scholar
Harder, H., 1972 The role of magnesium in the formation of smectite minerals Chemical Geology 10 3139 10.1016/0009-2541(72)90075-7.CrossRefGoogle Scholar
Harder, H., 1975 Synthese von Zink-Montmorin (Smektit) unter Oberflächenbedingungen Naturwissenschaften 62 235 10.1007/BF00603170.CrossRefGoogle Scholar
Harder, H., 1976 Nontronite synthesis at low temperatures Chemical Geology 18 169180 10.1016/0009-2541(76)90001-2.CrossRefGoogle Scholar
Harder, H., 1977 Clay mineral formation under lateritic weathering conditions Clay Minerals 12 281288 10.1180/claymin.1977.012.4.01.CrossRefGoogle Scholar
Harder, H., 1978 Synthesis of iron layer silicate minerals under natural conditions Clays and Clay Minerals 26 6572 10.1346/CCMN.1978.0260108.CrossRefGoogle Scholar
Hartman, H. Sposito, G. Yang, A. Manne, S. Gould, S.A.C. and Hansma, P.K., 1990 Molecular-scale imaging of clay-mineral surfaces with the atomic force microscope Clays and Clay Minerals 38 337342 10.1346/CCMN.1990.0380401.CrossRefGoogle Scholar
Harward, M.E. and Brindley, G.W., 1966 Swelling properties of synthetic smectites in relation to lattice substitutions Clays and Clay Minerals 13 209222 10.1346/CCMN.1964.0130121.CrossRefGoogle Scholar
Heinerman, J.J.L., 1985 Process for the hydroisomerization of paraffins US Patent 4,511,752. Date Issued: 16 April .Google Scholar
Henin, S., 1956 Synthesis of clay minerals at low temperatures Clays and Clay Minerals 4 5460 10.1346/CCMN.1955.0040108.CrossRefGoogle Scholar
Henin, S. and Robichet, O., 1954 A study of the synthesis of clay minerals Clay Minerals 2 110115 10.1180/claymin.1954.002.11.04.CrossRefGoogle Scholar
Herrero, C.P. Sanz, J. and Serratosa, J.M., 1985 Tetrahedral cation ordering in layer silicates by 29Si NMR spectroscopy Solid State Communications 53 151154 10.1016/0038-1098(85)90115-2.CrossRefGoogle Scholar
Herrero, C.P. Gregorkiewitz, M. Sanz, J. and Serratosa, J.M., 1987 29Si MAS-NMR spectroscopy of mica-type silicates: Observed and predicted distribution of tetrahedral Al-Si Physics and Chemistry of Minerals 15 8490 10.1007/BF00307613.CrossRefGoogle Scholar
Hertl, W. and Bartholomew, R.F., 1990 Orientation of hexanediamine in synthetic fluorhectorite Clays and Clay Minerals 38 507512 10.1346/CCMN.1990.0380507.CrossRefGoogle Scholar
Hickson, D.A., 1974 Layered clay minerals, catalysts, and processes for using US Patent 3,844,979. Date issued: 29 October .Google Scholar
Hickson, D.A., 1975 Layered clay minerals, catalysts, and processes for using US Patent 3,892,655. Date Issued: 1 July .Google Scholar
Holmgren, J., 1995 Hydrocarbon conversion process using a fluorided beidellite clay US Patent 5,393,411. Date Issued: 28 February .Google Scholar
Huve, L. Le Dred, R. Saehr, D. Baron, J., Occelli, M.L. and Robson, H., 1992 Synthesis of diotahedral 2:1 layer silicates in acid and fluoride medium Synthesis of Microporous Materials New York Van Nostrand Reinhold 202287.Google Scholar
Huve, L. Le Dred, R. Saehr, D. Baron, J., Occelli, M.L. and Kessler, H., 1997 Synthesis of dioctahedral 2:1 layer silicates in acid and fluoride medium Synthesis of Porous Materials: Zeolites, Clays, and Nanostructures New York Marcel Dekker 465489.Google Scholar
Iiyama, J.T. and Roy, R., 1963 Controlled synthesis of heteropolytypic (mixed layer) clay minerals Clays and Clay Minerals 10 422 10.1346/CCMN.1961.0100103.CrossRefGoogle Scholar
Iiyama, J.T. and Roy, R., 1963 Unusually stable saponite in the system Na2O-MgO-Al2O3-SiO2 Clay Minerals Bulletin 5 161171 10.1180/claymin.1963.005.29.01.CrossRefGoogle Scholar
Iwasaki, T O Y and Torii, K., 1989 Rheological properties of organophilic synthetic hectorites and saponites Clays and Clay Minerals 37 248257 10.1346/CCMN.1989.0370308.CrossRefGoogle Scholar
Jacobs, K.Y. Soers, J. Schoonheydt, R.A., Occelli, M.L. and Kessler, H., 1997 The synthesis of hectorite: A template effect? Synthesis of Porous Materials: Zeolites, Clays, and Nanostructures New York Marcel Dekker 451463.Google Scholar
Jaffe, J., 1974 Hydrothermal method for manufacturing a novel catalytic material, catalysts containing said material, and processes using said catalysts US Patent 3,803,026. Date Issued: 9 April .Google Scholar
Karšulin, M. and Stubičan, V., 1954 Über die Struktur and die Eigenschafte synthetischer Montmorillonite Monatsheft für Chemie 85 343358 10.1007/BF00904000.CrossRefGoogle Scholar
Kawano, M. and Tomita, K., 1992 Formation of allophane and beidellite during hydrothermal alteration of volcanic glass below 200°C Clays and Clay Minerals 40 666674 10.1346/CCMN.1992.0400606.CrossRefGoogle Scholar
Kawano, M. Tomita, K. and Kamino, Y., 1993 Formation of clay minerals during low temperature experimental alteration of obsidian Clays and Clay Minerals 41 431441 10.1346/CCMN.1993.0410404.CrossRefGoogle Scholar
Kloprogge, J.T., 1998 Synthesis of smectites and porous pillared clay catalysts: A review Journal of Porous Materials 5 541 10.1023/A:1009625913781.CrossRefGoogle Scholar
Kloprogge, J.T. and Vogels, R.J.M.J., 1995 Hydrothermal synthesis of ammonium-beidellite Clays and Clay Minerals 43 135137 10.1346/CCMN.1995.0430117.CrossRefGoogle Scholar
Kloprogge, J.T. van der Eerden, A.M.J. Jansen, J.B.H. and Geus, J.W., 1990 Hydrothermal synthesis of Na-beidellite Geologie en Mijnbouw 69 351357.Google Scholar
Kloprogge, J.T. Jansen, J.B.H. and Geus, J.W., 1990 Characterization of synthetic Na-beidellite Clays and Clay Minerals 38 409414 10.1346/CCMN.1990.0380410.CrossRefGoogle Scholar
Kloprogge, J.T. Breukelaar, J. Jansen, J.B.H. and Geus, J.W., 1993 Development of ammonium-saponites from gels with variable ammonium concentration and water content at low temperatures Clays and Clay Minerals 41 103110 10.1346/CCMN.1993.0410111.CrossRefGoogle Scholar
Kloprogge, J.T. van der Eerden, A.M.J. Jansen, J.B.H. Geus, J.W. and Schuiling, R.D., 1993 Synthesis and paragenesis of Na-beidellite as function of temperature, water pressure and sodium activity Clays and Clay Minerals 41 423430 10.1346/CCMN.1993.0410403.CrossRefGoogle Scholar
Kloprogge, J.T. Breukelaar, J. Geus, J.W. and Jansen, J.B.H., 1994 Characterization of Mg-saponites synthesized from gels containing amounts of Na+, K+, Rb+, Ca2+, Ba2+, or Ce4+ equivalent to the CEC of the saponite Clays and Clay Minerals 42 1822 10.1346/CCMN.1994.0420103.CrossRefGoogle Scholar
Kloprogge, J.T. Breukelaar, J. Wilson, A.E. Geus, J.W. and Jansen, J.B.H., 1994 Solid-state nuclear magnetic resonance spectroscopy on synthetic ammonium/aluminum-saponite Clays and Clay Minerals 42 416420 10.1346/CCMN.1994.0420406.CrossRefGoogle Scholar
Koizumi, M. and Roy, R., 1959 Synthetic montmorillonoids with variable exchange capacity American Mineralogist 44 788805.Google Scholar
Komarneni, S., 1989 Mechanisms of palygorskite and sepiolite alteration as deduced from solid-state 27Al and 29Si nuclear magnetic resonance spectroscopy Clays and Clay Minerals 37 469473 10.1346/CCMN.1989.0370512.CrossRefGoogle Scholar
Komarneni, S. and Breval, E., 1985 Characterization of smectites synthesized from zeolites and mechanism of smectite synthesis Clay Minerals 20 181188 10.1180/claymin.1985.020.2.03.CrossRefGoogle Scholar
Komarneni, S. and Roy, D.M., 1983 Alteration of clay minerals and zeolites in hydrothermal brines Clays and Clay Minerals 31 383391 10.1346/CCMN.1983.0310508.CrossRefGoogle Scholar
Kuchta, L. and Fajnor, V.S., 1988 Optimal conditions for hydrothermal synthesis of saponite Chemicke Zvesti 42 339345.Google Scholar
Levinson, A.A. and Day, J.J., 1968 Low temperature hydro-thermal synthesis of montmorillonite, ammonium-micas and ammonium-zeolites Earth and Planetary Science Letters 5 5254 10.1016/S0012-821X(68)80011-1.CrossRefGoogle Scholar
Levinson, A.A. and Vian, R.W., 1966 The hydrothermal synthesis of montmorillonite group minerals from kaolinite, quartz and various carbonates American Mineralogist 51 495498.Google Scholar
Li, L. Liu, X. Ge, Y. Xu, R. Rocha, J. and Klinowski, J., 1993 Structural studies of pillared saponite Journal of Physical Chemistry 97 1038910393 10.1021/j100142a021.CrossRefGoogle Scholar
Loewenstein, W., 1954 The distribution of aluminum in the tetrahedra of silicates and aluminates American Mineralogist 39 9296.Google Scholar
Luca, V. Chen, X. and Kevan, L., 1991 Characterization of Cu(II)-substituted fluorohectorite clay and interaction with adsorbates by electron spin resonance, electron spin echo modulation, and infrared spectroscopies Chemistry of Materials 3 10731081 10.1021/cm00018a024.CrossRefGoogle Scholar
Luca, V. Kevan, L. Rhodes, C.N. and Brown, D.R., 1992 A synthetic Zn-substituted smectite clay alkylation catalyst Clay Minerals 27 515519 10.1180/claymin.1992.027.4.10.CrossRefGoogle Scholar
Luca, V. Maclachlan, D.J. Howe, R.F. and Bramley, R., 1995 Synthesis and characterization of a (Zn, Ti)- substituted layered silicate Journal of Materials Chemistry 5 557564 10.1039/jm9950500557.CrossRefGoogle Scholar
Luth, W.C. and Ingamells, C.O., 1965 Gel preparation of starting materials for hydrothermal experimentation American Mineralogist 50 255258.Google Scholar
Miller, J.L. and Johnson, R.C., 1962 The synthesis and properties of a fluormica, intermediate between fluortaeniolite and fluorhectorite American Mineralogist 47 10491054.Google Scholar
Mizutani, T. Fukushima, Y. Okada, A. Kamigaito, O. and Kobayashi, T., 1991 Synthesis of 1:1 and 2:1 iron phyllosilicates and characterization of their iron state by Mössbauer spectroscopy Clays and Clay Minerals 39 381386 10.1346/CCMN.1991.0390407.CrossRefGoogle Scholar
Mosser, C. Mestdagh, M. Decarreau, A. and Herbillon, A.J., 1990 Spectroscopic (ESR, EXAFS) evidence of Cu for (Al-Mg) substitution in octahedral sheets of silicates Clay Minerals 25 271282 10.1180/claymin.1990.025.3.03.CrossRefGoogle Scholar
Murray, H.H., Churchman, G.J. Fitzpatrick, R.W. and Eggleton, R.A., 1995 Clays in industry and the environment Clays: Controlling the Environment, Proceedings of the 10th International Clay Conference, Adelaide, Australia, 1993 Melbourne, Australia CSIRO Publishing 4955.Google Scholar
Nakazawa, H. Yamada, H. Yoshioka, K. Adachi, M. and Fujita, T., 1991 Montmorillonite crystallization from glass Clay Science 8 5968.Google Scholar
Nakazawa, H. Yamada, H. and Fujita, T., 1992 Crystal synthesis of smectite applying very high pressure and temperature Applied Clay Science 6 395401 10.1016/0169-1317(92)90006-9.CrossRefGoogle Scholar
Neumann, B.S., 1965 Behavior of a synthetic clay in pigment dispersions Rheologica Acta 4 250255 10.1007/BF01973660.CrossRefGoogle Scholar
Neumann, B.S., 1971 Synthetic hectorite-type clay minerals US Patent 3,586,478. Date Issued: 22 June .Google Scholar
Neumann, B.S., 1972 Synthetic clay-like minerals of the smectite type and method of preparation US Patent 3,671,190. Date Issued: 20 June .Google Scholar
Neumann, B.S. and Sansom, K.G., 1970 The formation of stable sols from Laponite, a synthetic hectorite-like clay Clay Minerals 8 389404 10.1180/claymin.1970.008.4.03.CrossRefGoogle Scholar
Neumann, B.S. and Sansom, K.G., 1976 Synthesis of hydrous magnesium silicates US Patent 3,954,943. Date Issued: 4 May .Google Scholar
Noll, W., 1936 Über die Bildungsbedingungen von Kaolin, Montmorillonit, Sericit, Pyrophyllit und Analcim Tschermaks Mineralogische und Petrologische Mitteilungen 48 210247.Google Scholar
Norton, F.H., 1939 Hydrothermal alteration of clay minerals in the laboratory American Mineralogist 24 117.Google Scholar
Norton, F.H., 1941 Hydrothermal alteration of clay minerals in the laboratory, part II American Mineralogist 26 117.Google Scholar
Orlemann, J.K., 1972 Process for producing synthetic hectorite-type clays US Patent 3,666,407. Date Issued: 30 May .Google Scholar
Otsubo, Y. and Kato, C., 1954 Hydrothermal synthesis of montmorillonite-type silicates. III Journal of the Chemical Society of Japan 75 456459.Google Scholar
Plee, D. Schutz, A. Borg, F. Poncelet, G. Jacobs, P. Gati-neau, L. and Fripiat, J.J., 1984 Zeolite-like materials from clays French Patent 2,563,446 .Google Scholar
Plee, D. Gatineau, L. and Fripiat, J.J., 1987 Pillaring processes of smectites with and without tetrahedral substitu tions Clays and Clay Minerals 35 8188 10.1346/CCMN.1987.0350201.CrossRefGoogle Scholar
Röbschläger, K.H.W. Emeis, C.A. and van Santen, R.A., 1984 On the hydroisomerisation activity of nickel-substituted mica montmorillonite Journal of Catalysis 86 18 10.1016/0021-9517(84)90341-5.CrossRefGoogle Scholar
Roy, R., 1954 The application of phase equilibrium data to certain aspects of clay mineralogy Clays and Clay Minerals 2 124140 10.1346/CCMN.1953.0020111.CrossRefGoogle Scholar
Roy, D.M. and Mumpton, F.A., 1956 Stability of minerals in the system ZnO-SiO2-H2O Economic Geology 51 432443 10.2113/gsecongeo.51.5.432.CrossRefGoogle Scholar
Roy, D.M. and Roy, R., 1952 Studies in the system MgO-Al2O3-SiO2-H2O Bulletin of the Geological Society of America 63 12931294.Google Scholar
Roy, D.M. and Roy, R., 1955 Synthesis and stability of minerals in the system MgO-Al2O3-SiO2-H2O American Mineralogist 40 147178.Google Scholar
Roy, R. and Sand, L.B., 1956 A note on some properties of synthetic montmorillonites American Mineralogist 41 505509.Google Scholar
Roy, R. and Tuttle, O.F., 1956 Investigations under hydrothermal conditions Physics and Chemistry of the Earth 1 138180 10.1016/0079-1946(56)90008-8.CrossRefGoogle Scholar
Sand, L.B. and Crowley, M.S., 1956 Comparison of a natural bentonite (Wyoming) with its synthetic analogue Clays and Clay Minerals 4 96100 10.1346/CCMN.1955.0040114.CrossRefGoogle Scholar
Sand, LB R R and Osborn, E.E., 1953 Stability relations of some minerals in the system Na2O-Al2O3-SiO2-H2O Bulletin of the Geological Society of America 64 14691470.Google Scholar
Sand, LB R R and Osborn, E.E., 1957 Stability relations of some minerals in the Na2O-Al2O3-SiO2-H2O system Economic Geology 52 169179 10.2113/gsecongeo.52.2.169.CrossRefGoogle Scholar
Schutz, A. Plee, D. Borg, F. Jacobs, P. Poncelet, G. Fripiat, J.J., Schultz, L.G. van Olphen, H. and Mumpton, F.A., 1985 Acidity and catalytic properties of pillared montmorillonite and beidellite Proceedings of the International Clay Conference, Denver 1985 Bloomington, Indiana The Clay Minerals Society 305310.CrossRefGoogle Scholar
Schutz, A. Stone, W.E.E. Poncelet, G. and Fripiat, J.J., 1987 Preparation and characterization of bidimensional zeolitic structures obtained from synthetic beidellite and hydroxy-aluminum solutions Clays and Clay Minerals 35 251261 10.1346/CCMN.1987.0350402.CrossRefGoogle Scholar
Shabtai, J. Rosell, M. and Tokarz, M., 1984 Cross-linked smectites III. Synthesisand properties of hydroxy-aluminum hectorites and fluorhectorites Clays and Clay Minerals 32 99107 10.1346/CCMN.1984.0320203.CrossRefGoogle Scholar
Shaikh, N.A. and Wik, N.G., 1986 Clay Minerals-Modern Society Uppsala, Sweden Nordic Society of Clay Research.Google Scholar
Strese, H. and Hofmann, U., 1941 Synthesis of magnesium silicate gels with two-dimensional regular structure Zeitschrift für Anorganische und Allgemeine Chemie 247 6595 10.1002/zaac.19412470107.CrossRefGoogle Scholar
Stubican, V., 1959 Clay mineral research at the Institute for Silicate Chemistry, Zagreb Clays and Clay Minerals 7 295302 10.1346/CCMN.1958.0070120.CrossRefGoogle Scholar
Suquet, H. de la Calle, C. and Pezerat, H., 1975 Swelling and structural organization of saponite Clays and Clay Minerals 23 19 10.1346/CCMN.1975.0230101.CrossRefGoogle Scholar
Suquet, H. Iiyama, J.T. Kodama, H. and Pezerat, H., 1977 Synthesis and swelling properties of saponites with increasing layer charge Clays and Clay Minerals 25 231242 10.1346/CCMN.1977.0250310.CrossRefGoogle Scholar
Suquet, H. Malard, C. Copin, E. and Pezerat, H., 1981 Variation du parametre. b et de la distance basal. d 001 dans une serie de saponites a charge croissante—I. Etats hydrates Clay Minerals 16 5367 10.1180/claymin.1981.016.1.04.CrossRefGoogle Scholar
Suquet, H. Malard, C. Copin, E. and Pezerat, H., 1981 Variation du parametr. b et de la distance basal. d 001 dans une serie de saponites a charge croissante—II. Etats ‘zero couche’ Clay Minerals 16 181193 10.1180/claymin.1981.016.2.06.CrossRefGoogle Scholar
Suquet, H. Prost, R. and Pezerat, H., 1982 Etude par spectroscopic infrarouge et diffraction X des interactions eaucation-feuillet dans les phases a 14.6, 12.2 et 10.1 Å d’une saponite-Li de synthese Clay Minerals 17 231241 10.1180/claymin.1982.017.2.08.CrossRefGoogle Scholar
Taylor, J. and Neumann, B.S., 1968 The nature of synthetic swelling clays and their use in emulsion paint Journal of the Oil and Colour Chemists’ Association 51 232253.Google Scholar
Thieme, J. and Niemeyer, J., 1995 X-ray microscopy studies of clay aggregates in aqueous environments Euroclay ’95 Clays and Clay Sciences, Leuven, Belgium, August 20–24, Abstracts 21.Google Scholar
Tiller, K.G. and Pickering, J.G., 1974 The synthesis of zinc silicates at 20°C and atmospheric pressure Clays and Clay Minerals 22 409416 10.1346/CCMN.1974.0220507.CrossRefGoogle Scholar
Tomita, K. Yamane, H. and Kawano, M., 1993 Synthesis of smectite from volcanic glass at low temperature Clays and Clay Minerals 41 655661 10.1346/CCMN.1993.0410603.CrossRefGoogle Scholar
Torii, K., 1985 Synthesis of trioctahedral smectite Journal of the Clay Science Society of Japan 25 7178.Google Scholar
Torii, K. and Iwasaki, T., 1986 Synthesis of new trioctahedral Mg-smectite Chemistry Letters (Tokyo) 1986 20212024 10.1246/cl.1986.2021.CrossRefGoogle Scholar
Torii, K. and Iwasaki, T., 1987 Synthesis of hectorite Clay Science 7 116.Google Scholar
Torii, K. Asaka, M. and Hotta, M., 1983 Synthesis of silicates Japanese Patent 58/185,431. Date Issued: 29 October .Google Scholar
Tsunashima, A. Kanamaru, F. Ueda, S. Koizumi, M. and Matsushita, T., 1975 Hydrothermal syntheses of amino acid-montmorillonites and ammonium-micas Clays and Clay Minerals 23 115118 10.1346/CCMN.1975.0230206.CrossRefGoogle Scholar
Urabe, K. Koga, M. and Izumi, Y., 1989 Synthetic Ni-substituted saponite as a catalyst for selective dimerization of ethene Journal of the Chemical Society, Chemical Communications 1989 807808 10.1039/c39890000807.CrossRefGoogle Scholar
Usui, K. Sato, T. and Tanaka, M., 1985 Process for preparation of synthetic crystalline zinc silicate mineral European Patent 0,165,647. Date Issued: 27 December .Google Scholar
van Olphen, H. and Fripiat, J.J., 1979 Data Handbook for Clay Materials and Other Non-Metallic Minerals Oxford Pergamon Press.Google Scholar
van Santen, R.A. Röbschläger, K.H.W. Emeis, C.A., Grasselli, R.K. and Brazdil, J.F., 1985 The hydroisomerisation activity of nickel-substituted mica montmorillonite clay Solid State Chemistry in Catalysis, ACS Symposium Series 279 Washington, DC American Chemical Society 275291 10.1021/bk-1985-0279.ch017.CrossRefGoogle Scholar
Vogels, R.J.M.J. Kerkhoffs, M.J.H.V. and Geus, J.W., 1995 Non-hydrothermal synthesis, characterisation and catalytic properties of saponite clays Studies in Surface Science and Catalysis 91 11531161 10.1016/S0167-2991(06)81860-4.CrossRefGoogle Scholar
Vogels, R.J.M.J. Breukelaar, J. Kloprogge, J.T. Jansen, J.B.H. and Geus, J.W., 1997 Hydrothermal crystallization of ammonium-saponite at 200 °C and autogenous water pressure Clays and Clay Minerals 45 17 10.1346/CCMN.1997.0450101.CrossRefGoogle Scholar
Weaver, C.E. and Pollard, L.D., 1973 The Chemistry of Clay Minerals London Elsevier.Google Scholar
Xiang, Y. and Villemure, G., 1996 Electrodes modified with synthetic clay minerals: Electrochemistry of cobalt smectites Clays and Clay Minerals 44 515521 10.1346/CCMN.1996.0440410.CrossRefGoogle Scholar
Yamada, H. and Nakazawa, H., 1995 Smectite crystals: Mg-content dependency of formation at high pressure and high temperature Euroclay ’95 Clays and Clay Sciences, Leuven, Belgium, August 20–24. Abstracts 910.Google Scholar
Yamada, H. Nakazawa, H. Yoshioka, K. and Fujita, T., 1991 Smectites in the montmorillonite-beidellite series Clay Minerals 26 359369 10.1180/claymin.1991.026.3.05.CrossRefGoogle Scholar
Yamada, H. Yoshioka, K. and Nakazawa, H., 1991 Hydrothermal synthesis of beidellite from aluminosilicate glass by varying water/solid ratio Mineralogical Journal 15 300308 10.2465/minerj.15.300.CrossRefGoogle Scholar
Yamada, H. Azuma, N. and Kevan, L., 1994 Electron spin resonance study of Ni(I) stabilized in nickel-substituted and nickel ion-exchanged synthetic hydroxyhectorites Journal of Physical Chemistry 98 1301713021 10.1021/j100100a033.CrossRefGoogle Scholar
Yamada, H. Nakazawa, H. and Hashizume, H., 1994 Formation of smectite crystals at high pressures and temperatures Clays and Clay Minerals 42 674678 10.1346/CCMN.1994.0420603.CrossRefGoogle Scholar
Yamada, H. Nakazawa, H. Hashizume, H. Shimomura, S. and Watanabe, T., 1994 Hydration behavior of Na-smectite crystals synthesized at high pressure and high temperature Clays and Clay Minerals 42 7780 10.1346/CCMN.1994.0420110.CrossRefGoogle Scholar
Yanagisawa, K.T. Kusunose, IK I K Yamasaki, N. Malla, P.B. and Komarneni, S., 1995 Hydrothermal crystallization mechanism of Na beidellite from amorphous gel Journal of Materials Science Letters 14 17701772 10.1007/BF00271003.CrossRefGoogle Scholar