Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-24T01:13:08.280Z Has data issue: false hasContentIssue false

Synthesis of Na-A Zeolite from 10 Å Halloysite and a new Crystallization Kinetic Model for the Transformation of Na-A into HS Zeolite

Published online by Cambridge University Press:  01 January 2024

Daniela Novembre
Affiliation:
Dipartimento di Scienze della Terra, Université degli Studi ‘G.D’Annunzio’, Via dei Vestini 30, 66013 Chieti, Italy
Bruno Di Sabatino
Affiliation:
Dipartimento di Scienze della Terra, Université degli Studi ‘G.D’Annunzio’, Via dei Vestini 30, 66013 Chieti, Italy
Domingo Gimeno*
Affiliation:
Departamento de Geoquímica, Petrologia y Prospecció Geològica, Universitat de Barcelona, 08028 Barcelona, Spain
*
*E-mail address of corresponding author: domingo@natura.geo.ub.es

Abstract

The present work deals with the synthesis of Na-A zeolite using 10 Å halloysite (collected near Grosseto, Italy) as the starting material, instead of the more expensive chemicals currently used in industry (Na aluminates and Na silicates). The process of synthesizing Na-A zeolite from 10 Å halloysite is rather simple as the reaction of halloysite with alkali occurs very readily and is achieved without prior thermal activation at high temperature. The optimal conditions of crystallization of Na-A zeolite from 10 Å halloysite are reached at 80°C. At lower temperatures, transformation of halloysite into an amorphous material requires more time, and the field within which Na-A zeolite exists overlaps that of 7 Å halloysite, G and HS zeolites. The products of synthesis at 80°C were characterized by X-ray diffraction, scanning electron microscopy, inductively coupled plasma optical emission spectrometry and infrared spectroscopy. We also propose a model to study the reaction kinetics of zeolite (Na-A and HS) nucleation and growth by real-time X-ray powder diffraction data.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiello, R. and Franco, E., (1968) Formazione di zeoliti per trasformazione di halloysite e montmorillonite a bassa temperatura ed in ambiente alcalino Rendiconti delia Academia di Scienze Fisiche e Matematiche Delia Società. Nazionale di Scienze Lettere ed Arti di Napoli 35 4 165192.Google Scholar
Akokelar, D. Chaffee, A. and Howe, R.F., (1997) The transformation of kaolin to low-silica X zeolite Zeolites 19 359365 10.1016/S0144-2449(97)00132-2.Google Scholar
Avrami, M., (1939) Kinetics of phase change. I — General Theory Journal of Chemical Physics 7 11031112 10.1063/1.1750380.Google Scholar
Aznar, A.J. and La Iglesia, A., (1985) Obtenciön de zeolitas a partir de arcillas aluminosas españolas Boletin Geológico y Minero 96 541549.Google Scholar
Cardoso, A.C. Duchemin, J. Magoarou, P. and Premazzi, G., (2001) Criteria for the identification of freshwaters subject to eutrophication. Their use for the implementation of the ‘Nitrates’ and Urban Waste Treatment directives .Google Scholar
Chapra, S.C., (1977) Total phosphorous model for the Great Lakes Journal of the Environmental Engineering Division, Proceedings of the American Society of Civil Engineers 103 EE2 147161.Google Scholar
Chiaudiani, G. Premazzi, G. Vismara, R. Butelli, P. and Poltronieri, P., (1988) Sostituti del fosforo nella formula-zione dei detersivi. Studio di impatto ambientale Ingegneria Ambientale, Inquinamento e Depurazione, Quaderni 8 160.Google Scholar
Clifton, R.A., (1987) Natural and Synthetic Zeolites .Google Scholar
Costanzo, P.M. and Giese, R.F., (1985) Dehydration of synthetic hydrated kaolinites: a model for the dehydration of halloysite (10 Å) Clays and Clay Minerals 33 415423 10.1346/CCMN.1985.0330507.Google Scholar
Demortier, A. Gobeltz, N. Lelieur, J.P. and Duhayon, C., (1999) Infrared evidence for the formation of an intermediate compound during the synthesis of zeolite Na-A from metakaolin International Journal of Inorganic Materials 1 129134 10.1016/S1466-6049(99)00020-3.Google Scholar
Di Sabatino, B. Barrese, E. Mattias, P. and Crocetti, G., (1996) L’ Halloysite di Capalbio (Grosseto). Ipotesi genetica Mineralogica et Petrographica Acta 30 291300.Google Scholar
Ehrun, M. and Advani, S.G., (1992) A B.E.M. approach to model heat flow during crystallization International Journal for Numerical Methods in Engineering 35 351368 10.1002/nme.1620350208.Google Scholar
Flaningen, E.M. Khatami, H.A. and Szymanski, H.A., (1971) Infrared structural study of zeolite frameworks. Advances in chemistry series n. 101 Molecular Sieve Zeolites 16 201229.Google Scholar
Franco, E. and Aiello, R., (1968) Trasformazioni dell’halloysite per trattamento idrotermale in ambiente alcalino Rendiconti delia Società Italiana di Mineralogia e Petrologia 24 11 251269.Google Scholar
Gualtieri, A.F., (2001) Synthesis of sodium zeolites from a natural halloysite Physics and Chemistry of Minerals 28 719728 10.1007/s002690100197.Google Scholar
Gualtieri, A. Norby, P. Artioli, G. and Hanson, J., (1997) Kinetics of formation of zeolite Na-A (LTA) from natural kaolinites Physics and Chemistry of Minerals 24 191199 10.1007/s002690050032.Google Scholar
Kerr, P. Hamilton, P. and Pill, R., (1950) Reference Clay Minerals .Google Scholar
La Iglesia, A. Martin-Vivaldi, L. and Pozzuoli, A., (1974) Formación de zeolita A y faujasita a partir de haloisita en condiciones ambientales Boletin Geolögico y Minero 85 442449.Google Scholar
Madani, A. Aznar, A. Sanz, J. and Serratosa, J.M., (1990) 29Si and 27Al NMR study of zeolite formation from alkali-leached kaolinites. Influence of thermal preactivation Journal of Physical Chemistry 94 760765 10.1021/j100365a046.Google Scholar
Pasculli, A. Baliva, A D Sabatino, M. Novembre, D., Lippard, S.J. Naess, A. and Sinding-Larsen, R., (1999) Modelling of crystallization kinetic for a macroscopic two component system Proceedings of IAMG ’99, Meeting of the International Association of Mathematical Geology, Trondheim, Norway 233238.Google Scholar
Robert, J.-L. Delia Ventura, G. and Thauvin, J.L., (1989) The infrared OH-stretching region of synthetic richterites in the system Na2O-K2O-CaO-MgO-SiO2-H2O-HF European Journal of Mineralogy 1 203211 10.1127/ejm/1/2/0203.Google Scholar
Rocha, J. and Klinowski, J., (1991) Synthesis of zeolite Na-A from metakaolinite revisited Journal of the Chemical Society, Faraday Transactions 87 30913097 10.1039/ft9918703091.Google Scholar
Subotic, B. Masic, N. Smit, I., Drzaj, B. and Hocevar Pejovnik, S., (1985) I 3— Analysis of particulate processes during the transformation of Zeolite A into hydroxysodalite Zeolites New York Elsevier 207214.Google Scholar
Takahashi, H. and Nishimura, Y., (1967) Formation of zeolite type A from halloysite and allophane Clays and Clay Minerals 15 185186 10.1346/CCMN.1967.0150119.Google Scholar
Takahashi, H. and Nishimura, Y., (1968) Formation of faujasite-like zeolite from halloysite Clays and Clay Minerals 16 399400 10.1346/CCMN.1968.0160509.Google Scholar
Van Krevelen, D.W., (1978) Crystallinity of polymers and the means to influence the crystallization process Chimica 32 279294.Google Scholar