Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-28T00:38:36.146Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Ordered Mesoporous MCM-41 From Natural Chlorite and its Application in Methylene Blue Adsorption

Published online by Cambridge University Press:  01 January 2024

Zhizeng Wang
Affiliation:
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Qinyi Zhao
Affiliation:
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Dongyun Wang
Affiliation:
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Chong Cui*
Affiliation:
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
*
*E-mail address of corresponding author: cuichong@njust.edu.cn

Abstract

Mesoporous materials have a wide range of applications in the fields of nanotechnology, biotechnology, information technology, and medicine, but historically, the resource materials used for their synthesis have been expensive. Natural silicate minerals are characterized by their abundance, low cost, and large SiO2 contents, making them an alternative silicon source for mesoporous silica. The objective of the present study was to determine the utility of natural chlorite as the source of Si for synthesizing hexagonal mesoporous silica materials (MCM-41). The natural chlorite was pretreated by acid leaching and calcination, followed by a hydrothermal reaction with cetyltrimethylammonium bromide (CTAB) as the template, and subsequent calcination to prepare MCM-41. The structures and the porosity of MCM-41 were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), 29Si magic-angle spinning solid-state nuclear magnetic resonance spectroscopy (29Si MAS NMR), and N2 adsorption–desorption measurements. The mechanism of structural evolution from natural chlorite to MCM-41 was investigated using these techniques. Calcination of chlorite results in amorphization and partial structural breakdown, while subsequent acid leaching dissolves the Mg and Al in the octahedral sheets to leave the Si–O framework as a silicon source. 29Si MAS NMR results revealed that the ratio of Q4/Q3 increased from 0.91 to 1.21 after hydrothermal synthesis of MCM-41 from leached chlorite, demonstrating more polymerization of the Si–O structure in MCM-41. The final MCM-41 products were amorphous SiO2, with a large surface area of 630 m2/g, a pore volume of 0.46 mL/g, and a narrow pore-size distribution of 2.8 nm. MCM-41 showed favorable adsorption toward methylene blue (MB) with a monolayer adsorption capacity of up to 302 mg/g, indicating potential for application in adsorption.

Type
Article
Copyright
Copyright © Clay Minerals Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amama, P. B., Lim, S., Ciuparu, D., Pfefferle, L., & Haller, G. L. (2005). Hydrothermal synthesis of MCM-41 using different ratios of colloidal and soluble silica. Microporous and Mesoporous Materials, 81, 191200.CrossRefGoogle Scholar
Angelos, S., Liong, M., Choi, E., & Zink, J. I. (2008). Mesoporous silicate materials as substrates for molecular machines and drug delivery. Chemical Engineering Journal, 137, 413.CrossRefGoogle Scholar
Ariga, K., Vinu, A., Yamauchi, Y., Ji, Q., & Hill, J. P. (2012). Nanoarchitectonics for Mesoporous Materials. Bulletin of the Chemical Society of Japan, 85, 132.CrossRefGoogle Scholar
Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society, 73, 373380.CrossRefGoogle Scholar
Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., & Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114, 1083410843.CrossRefGoogle Scholar
Chen, H., & Wang, Y. (2002). Preparation of MCM-41 with high thermal stability and complementary textural porosity. Ceramics International, 28, 541547.CrossRefGoogle Scholar
Chen, Q., Zhu, R., Fu, H., Ma, L., Zhu, J., He, H., & Deng, Y. (2018). From natural clay minerals to porous silicon nanoparticles. Microporous and Mesoporous Materials, 260, 7683.CrossRefGoogle Scholar
Chen, H., Yang, H., & Xi, Y. (2019). Microporous and mesoporous materials highly ordered and hexagonal mesoporous silica materials with large specific surface from natural rectorite mineral. Microporous and Mesoporous Materials, 279, 5360.CrossRefGoogle Scholar
Costa, J. A. S., de Jesus, R. A., Santos, D. O., Mano, J. F., Romão, L. P. C., & Paranhos, C. M. (2020). Recent progresses in the adsorption of organic, inorganic, and gas compounds by MCM-41-based mesoporous materials. Microporous and Mesoporous Materials, 291, 109698.CrossRefGoogle Scholar
Du, C., & Yang, H. (2009). Simple synthesis and characterization of nanoporous materials from talc. Clays and Clay Minerals, 57, 290301.CrossRefGoogle Scholar
Du, C., & Yang, H. (2012). Investigation of the physicochemical aspects from natural kaolin to Al-MCM-41 mesoporous materials. Journal of Colloid and Interface Science, 369, 216222.CrossRefGoogle ScholarPubMed
Duer, M. J. (2001). Solid-State NMR Spectroscopy Principles and Applications. John Wiley & Sons, New Jersey, USA, 592 pp.CrossRefGoogle Scholar
Eftekhari, S., Habibi-Yangjeh, A., & Sohrabnezhad, S. H. (2010). Application of AlMCM-41 for competitive adsorption of methylene blue and rhodamine B: Thermodynamic and kinetic studies. Journal of Hazardous Materials, 178, 349355.CrossRefGoogle ScholarPubMed
Firouzi, A., Kumar, D., Bull, L. M., Besier, T., Sieger, P., Huo, Q., et al. (1995). Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science, 267, 11381143.CrossRefGoogle ScholarPubMed
Freundlich, H. M. F. (1906). Over the adsorption in solution. The Journal of Physical Chemistry, 57, 385.Google Scholar
Guan, Y., Wang, S., Wang, X., Sun, C., Wang, Y., & Hu, L. (2018). Preparation of mesoporous Al-MCM-41 from natural palygorskite and its adsorption performance for hazardous aniline dye-basic fuchsin. Microporous and Mesoporous Materials, 265, 266274.CrossRefGoogle Scholar
He, H., Guo, J., Xie, X., Lin, H., & Li, L. (2002). A microstructural study of acid-activated montmorillonite from Choushan, China. Clay Minerals, 37, 337344.CrossRefGoogle Scholar
He, J., Ma, K., Jin, J., Dong, Z., Wang, J., & Li, R. (2009). Preparation and characterization of octyl-modified ordered mesoporous carbon CMK-3 for phenol adsorption. Microporous and Mesoporous Materials, 121, 173177.CrossRefGoogle Scholar
Ho, K. Y., McKay, G., & Yeung, K. L. (2003). Selective adsorbents from ordered mesoporous silica. Langmuir, 19, 30193024.CrossRefGoogle Scholar
Hong, H., Zhang, K., & Li, Z. (2010). Climatic and tectonic uplift evolution since ~7 Ma in Gyirong basin, southwestern Tibet plateau: clay mineral evidence. International Journal of Earth Sciences, 99, 13051315.CrossRefGoogle Scholar
Igarashi, N., Koyano, K.A., Tanaka, Y., Nakata, S., Hashimoto, K., & Tatsumi, T. (2003). Investigation of the factors influencing the structural stability of mesoporous silica molecular sieves. Microporous and Mesoporous Materials, 59, 4352.CrossRefGoogle Scholar
Jin, S., Qiu, G., Xiao, F., Chang, Y., Wan, C., & Yang, M. (2007). Investigation of the structural characterization of mesoporous molecular sieves MCM-41 from sepiolite. Journal of the American Ceramic Society, 90, 957961.CrossRefGoogle Scholar
Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359, 710712.CrossRefGoogle Scholar
Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38, 22212295.CrossRefGoogle Scholar
Liepold, A., Roos, K., Reschetilowski, W., Esculcas, A. P., Rocha, J., Philippou, A., & Anderson, M. W. (1996). Textural, structural and acid properties of a catalytically active mesoporous aluminosilicate MCM-41. Journal of the Chemical Society, Faraday Transactions, 92, 4623.CrossRefGoogle Scholar
Luan, Z., Cheng, C. F., Zhou, W., & Klinowski, J. (1995). Mesopore molecular sieve MCM-41 containing framework aluminum. The Journal of Physical Chemistry, 99, 10181024.CrossRefGoogle Scholar
Mackenzie, K. J. D., Brown, I. W. M., Meinhold, R. H., & Bowden, M. E. (1985). Thermal Reactions of Pyrophyllite Studied by High-Resolution Solid-state 27Al and 29Si Nuclear Magnetic Resonance Spectroscopy. Journal of the American Ceramic Society, 68, 266272.CrossRefGoogle Scholar
Maletaškić, J., Stanković, N., Daneu, N., Babić, B., Stoiljković, M., Yoshida, K., & Matović, B. (2018). Acid leaching of natural chrysotile asbestos to mesoporous silica fibers. Physics and Chemistry of Minerals, 45, 343351.CrossRefGoogle Scholar
Mokhonoana, M. P., & Coville, N. J. (2010). Synthesis of [Si]-MCM-41 from TEOS and water glass: The water glass-enhanced condensation of TEOS under alkaline conditions. Journal of Sol-Gel Science and Technology, 54, 8392.CrossRefGoogle Scholar
Monnier, A., Schuth, F., Huo, Q., Kumar, D., Margolese, D., Maxwell, R. S., Stucky, G. D., Krishnamurty, M., Petrof, P., Firouzi, A., Janicke, M., & Chmelka, B. F. (1993). Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science, 261, 12991303.CrossRefGoogle ScholarPubMed
Okada, K., Shimai, A., Takei, T., Hayashi, S., Yasumori, A., & MacKenzie, K. J. D. (1998). Preparation of microporous silica from metakaolinite by selective leaching method. Microporous and Mesoporous Materials, 21, 289296.CrossRefGoogle Scholar
Okada, K., Nakazawa, N., Kameshima, Y., Yasumori, A., Temuujin, J., MacKenzie, K. J. D., & Smith, M. E. (2002). Preparation and porous properties of materials prepared by selective leaching of phlogopite. Clays and Clay Minerals, 50, 624632.CrossRefGoogle Scholar
Okada, K., Arimitsu, N., Kameshima, Y., Nakajima, A., & Mac-Kenzie, K. J. D. (2005). Preparation of porous silica from chlorite by selective acid leaching. Applied Clay Science, 30, 116124.CrossRefGoogle Scholar
Perathoner, S., Lanzafame, P., Passalacqua, R., Centi, G., Schlögl, R., & Su, D. S. (2006). Use of mesoporous SBA15 for nanostructuring titania for photocatalytic applications. Microporous and Mesoporous Materials, 90, 347361.CrossRefGoogle Scholar
Redlich, O., & Peterson, D. L. (1959). A useful adsorption isotherm. The Journal of Physical Chemistry, 63, 10241024.CrossRefGoogle Scholar
Seliem, M. K., Komarneni, S., & Abu Khadra, M. R. (2016). Phosphate removal from solution by composite of MCM41 silica with rice husk: Kinetic and equilibrium studies. Microporous and Mesoporous Materials, 224, 5157.CrossRefGoogle Scholar
Shu, Z., Li, T., Zhou, J., Chen, Y., Yu, D., & Wang, Y. (2014). Template-free preparation of mesoporous silica and alumina from natural kaolinite and their application in methylene blue adsorption. Applied Clay Science, 102, 3340.CrossRefGoogle Scholar
Shu, Y., Shao, Y., Wei, X., Wang, X., Sun, Q., Zhang, Q., & Li, L. (2015). Synthesis and characterization of Ni-MCM-41 for methyl blue adsorption. Microporous and Mesoporous Materials, 214, 8894.CrossRefGoogle Scholar
Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57, 603619.CrossRefGoogle Scholar
Steudel, A., Kleeberg, R., Koch, C. B., Friedrich, F., & Emmerich, K. (2016). Thermal behavior of chlorites of the clinochlore-chamosite solid solution series: Oxidation of structural iron, hydrogen release and dehydroxylation. Applied Clay Science, 132–133, 626634.CrossRefGoogle Scholar
Temuujin, J., Okada, K., MacKenzie, K. J. D., & Jadambaa, T. (2001). Characterization of porous silica prepared from mechanically amorphized kaolinite by selective leaching. Powder Technology, 121, 259262.CrossRefGoogle Scholar
Tokarčíková, M., Kutláková, K. M., & Seidlerová, J. (2016). Leaching test for calcined kaolinite and kaolinite/TiO2 photoactive composite. Chemical Papers, 70, 12531261.CrossRefGoogle Scholar
Vyshegorodtseva, E. V., Larichev, Y. V., & Mamontov, G. V. (2019). The influence of CTAB/Si ratio on the textural properties of MCM-41 prepared from sodium silicate. Journal of Sol-Gel Science and Technology, 92, 496505.CrossRefGoogle Scholar
Xie, Y., Zhang, Y., Ouyang, J., & Yang, H. (2014). Mesoporous material Al-MCM-41 from natural halloysite. Physics and Chemistry of Minerals, 41, 497503.CrossRefGoogle Scholar
Yang, H., Tang, A., Ouyang, J., Li, M., & Mann, S. (2010). From natural attapulgite to mesoporous materials: Methodology, characterization and structural evolution. The The Journal of Physical Chemistry B, 114, 23902398.CrossRefGoogle ScholarPubMed
Zhan, W., & Guggenheim, S. (1995). The dehydroxylation of chlorite and the formation of topotactic product phases. Clays and Clay Minerals, 43, 622629.CrossRefGoogle Scholar
Zhou, C., Sun, T., Gao, Q., Alshameri, A., Zhu, P., Wang, H., Qiu, X., Ma, Y., & Yan, C. (2014). Synthesis and characterization of ordered mesoporous aluminosilicate molecular sieve from natural halloysite. Journal of the Taiwan Institute of Chemical Engineers, 45, 10731079.CrossRefGoogle Scholar
Zhou, C., Gao, Q., Luo, W., Zhou, Q., Wang, H., Yan, C., & Duan, P. (2015). Preparation, characterization and adsorption evaluation of spherical mesoporous Al-MCM-41 from coal fly ash. Journal of the Taiwan Institute of Chemical Engineers, 52, 147157.CrossRefGoogle Scholar