Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-24T00:49:52.613Z Has data issue: false hasContentIssue false

Sustained-Release Drug Delivery Potential of Antibiotic–Montmorillonite Composites Prepared Using Montmorillonite Mined in Gampo, Republic of Korea

Published online by Cambridge University Press:  01 January 2024

Myungjae Kim
Affiliation:
Department of OrganicMaterials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea
Ki-Min Roh
Affiliation:
Advanced Geo-Materials R&D Department, Pohang Branch, Korea Institute of Geoscience and Mineral Resources, Pohang 37559, Republic of Korea Department of Nanomaterials Science and Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea
Jiwoo Kim
Affiliation:
Department of OrganicMaterials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea
Minkyeong Seo
Affiliation:
Department of OrganicMaterials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea
Il-Mo Kang
Affiliation:
Advanced Geo-Materials R&D Department, Pohang Branch, Korea Institute of Geoscience and Mineral Resources, Pohang 37559, Republic of Korea
Jiwoong Kim*
Affiliation:
Department of OrganicMaterials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea
*

Abstract

Biocompatible drug-delivery materials are important because they provide controlled release of biologically active agents to enhance the effectiveness of medical treatments. Montmorillonite (Mnt) has been utilized in drug-delivery systems for delayed-release application because it can safely encapsulate drug molecules via intercalation reactions. The objective of the present study was to evaluate the delivery characteristics of the drug ciprofloxacin (CIP) from a composite with Mnt (Mnt-CIP) in which the Mnt was first prepared by acid treatment and vibration ball milling. The surfaces of Mnt were modified by reacting the Mnt suspension in 1.0 M HCl acid and by dispersing the powder with a vibration ball mill, then the CIP drug was added at pH 4 and stirred. The goal was to improve the sustained-release performance of the CIP. This Mnt-CIP drug-release system was characterized by X-ray diffraction, X-ray fluorescence analysis, Fourier-transform infrared spectroscopy, surface area measurement using the Brunauer-Emmett-Teller (BET) method, and ultraviolet spectroscopy. The X-ray diffraction results confirmed the intercalation of CIP into the interlayer space of Mnt. The in vitro release properties of the intercalated CIP were investigated using a simulated phosphate-buffered saline solution (pH 7.4) at 36±0.5°C. The CIP drug exhibited a continued release for 3 h. Moreover, Mnt prepared by HCl acid treatment and dispersion in the vibration ball mill delayed the drug dissolution rate. In summary, the Mnt-CIP composite prepared in this study exhibited slow and sustained release characteristics, indicating that Mnt mined from the Gampo-40 mining area in Gyeongju can be used in various drug-delivery applications.

Type
Original Paper
Copyright
Copyright © The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Myungjae Kim and Ki-Min Roh contributed equally to this work.

References

Akahane, K., Kato, M., & Takayama, S. (1993). Involvement of inhibitory and excitatory neurotransmitters in levofloxacin-induced and ciprofloxacin-induced convulsions in mice. Antimicrobial Agents and Chemotherapy, 37(9), 1764–1770. https://doi.org/10.1128/AAC.37.9.1764CrossRefGoogle Scholar
Bekaroğlu, M. G., Nurili, F., & Isçi, S. (2018). Montmorillonite as imaging and drug delivery agent for cancer therapy. Applied Clay Science, 162, 469477. https://doi.org/10.1016/j.clay.2018.06.039CrossRefGoogle Scholar
Ben, Y., Fu, C., Hu, M., Liu, L., Wong, M. H., & Zheng, C. (2019). Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environmental Research, 169, 483493. https://doi.org/10.1016/j.envres.2018.11.040CrossRefGoogle ScholarPubMed
Biswas, B., Sarkar, B., Rusmin, R., & Naidu, R. (2017). Mild acid and alkali treated clay minerals enhance bioremediation of polycyclic aromatic hydrocarbons in long-term contaminated soil: A 14C-tracer study. Environmental Pollution, 223, 255265. https://doi.org/10.1016/j.envpol.2017.01.022CrossRefGoogle Scholar
Choy, J., Choi, S., Oh, J., & Park, T. (2007). Clay minerals and layered double hydroxides for novel biological applications. Applied Clay Science, 36(1-3), 122132. https://doi.org/10.1016/j.clay.2006.07.007CrossRefGoogle Scholar
Cohen, R., & Yariv, S. (1984). Metachromasy in clay minerals. Sorption of acridine orange by montmorillonite. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 80(7), 1705. https://doi.org/10.1039/f19848001705CrossRefGoogle Scholar
Costa, P., & Sousa Lobo, J. M. (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 13(2), 123133. https://doi.org/10.1016/s0928-0987(01)00095-1CrossRefGoogle ScholarPubMed
Dash, S., Murthy, P. N., Nath, L., & Chowdhury, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica, 67(3), 217223 https://pubmed.ncbi.nlm.nih.gov/20524422/Google ScholarPubMed
Davis, R., Markham, A., & Balfour, J. A. (1996). Ciprofloxacin. An updated review of its pharmacology, therapeutic efficacy and tolerability. Drugs, 51(6), 10191074. https://doi.org/10.2165/00003495-199651060-00010CrossRefGoogle ScholarPubMed
Edelman, C. T., & Favejee, J. C. L. (1940). On the crystal structure of montmorillonite and halloysite. Zeitschrift für Kristallographie-Crystalline Materials, 102(1-6), 417431. https://doi.org/10.1524/zkri.1940.102.1.417CrossRefGoogle Scholar
Ekosse, G. I. E., Mulaba-Bafubiandi, A., & Nkoma, J. S. (2007). Physico-chemistry of continental bentonites and kaolin for ceramic applications. African Journal of Science and Technology, 8(1), 107115 https://www.ajol.info/index.php/ajst/article/view/155942Google Scholar
Feng, S. S., Mei, L., Anitha, P., Gan, C. W., & Zhou, W. (2009). Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Biomaterials, 30(19), 32973306. https://doi.org/10.1016/j.biomaterials.2009.02.045CrossRefGoogle ScholarPubMed
Gentry, L. O., & Rodriguez, G. G. (1990). Oral ciprofloxacin compared with parenteral antibiotics in the treatment of osteomyelitis. Antimicrobial Agents and Chemotherapy, 34(1), 4043. https://doi.org/10.1128/aac.34.1.40CrossRefGoogle ScholarPubMed
Hamilton, A. R., Hutcheon, G. A., Roberts, M., & Gaskell, E. E. (2014). Formulation and antibacterial profiles of clay– ciprofloxacin composites. Applied Clay Science, 87, 129135. https://doi.org/10.1016/j.clay.2013.10.020CrossRefGoogle Scholar
Herbert, L. (1960). Infrared spectra of lignin and related compounds. II. Conifer lignin and model compounds. The Journal of Organic Chemistry, 25(3), 405413. https://doi.org/10.1021/jo01073a026Google Scholar
Hofmann, U., Endell, K., & Wilm, D. (1933). Kristallstruktur und quellung von montmorillonit. Zeitschrift für Kristallographie-Crystalline Materials, 86(1-6), 340348.CrossRefGoogle Scholar
Hong, H. J., Kim, J., Kim, D. Y., Kang, I., Kang, H. K., & Ryu, B. G. (2019). Synthesis of carboxymethylated nanocellulose fabricated ciprofloxacine – Montmorillonite composite for sustained delivery of antibiotics. International Journal of Pharmaceutics, 567, 118502. https://doi.org/10.1016/j.ijpharm.2019.118502CrossRefGoogle ScholarPubMed
Jin, X., Hu, X., Wang, Q., Wang, K., Yao, Q., Tang, G., & Chu, P. K. (2014). Multifunctional cationic polymer decorated and drug intercalated layered silicate (NLS) for early gastric cancer prevention. Biomaterials, 35(10), 32983308. https://doi.org/10.1016/j.biomaterials.2013.12.040CrossRefGoogle ScholarPubMed
Joshi, G. V., Kevadiya, B. D., Patel, H. A., Bajaj, H. C., & Jasra, R. V. (2009a). Montmorillonite as a drug delivery system: Intercalation and in vitro release of timolol maleate. International Journal of Pharmaceutics, 374(1-2), 5357. https://doi.org/10.1016/j.ijpharm.2009.03.004CrossRefGoogle ScholarPubMed
Joshi, G. V., Patel, H. A., Kevadiya, B. D., & Bajaj, H. C. (2009b). Montmorillonite intercalated with vitamin B1 as drug carrier. Applied Clay Science, 45(4), 248253. https://doi.org/10.1016/j.clay.2009.06.001CrossRefGoogle Scholar
Kaviratna, H., & Pinnavaia, T. J. (1994). Acid hydrolysis of octahedral Mg 2+ sites in 2: 1 layered silicates: An assessment of edge attack and gallery access mechanisms. Clays and Clay Minerals, 42(6), 717723. https://doi.org/10.1346/CCMN.1994.0420607CrossRefGoogle Scholar
Kim, D., Kim, D., Kim, J., Park, C., Roh, K. M., Kang, I. M., & Seo, S. M. (2020). Synthesis and characterization of montmorillonite-supported TiO2 composites for enhanced UV absorption. Clays and Clay Minerals, 68(6), 533543. https://doi.org/10.1007/s42860-020-00094-6CrossRefGoogle Scholar
Koç Demir, A., Elçin, A. E., & Elçin, Y. M. (2018). Strontiummodified chitosan/montmorillonite composites as bone tissue engineering scaffold. Materials Science and Engineering: C, 89, 814. https://doi.org/10.1016/j.msec.2018.03.021CrossRefGoogle ScholarPubMed
Korsmeyer, R. W., Gurny, R., Doelker, E., Buri, P., & Peppas, N. A. (1983). Mechanisms of solute release from porous hydrophilic polymers. International Journal of Pharmaceutics, 15(1), 2535. https://doi.org/10.1016/0378-5173(83)900649CrossRefGoogle Scholar
Krupskaya, V. V., Zakusin, S. V., Tyupina, E. A., Dorzhieva, O. V., Zhukhlistov, A. P., Belousov, P. E., & Timofeeva, M. N. (2017). Experimental study of montmorillonite structure and transformation of its properties under treatment with inorganic acid solutions. Minerals, 7(4), 49. https://doi.org/10.3390/min7040049CrossRefGoogle Scholar
Lazzarini, L., Lipsky, B. A., & Mader, J. T. (2005). Antibiotic treatment of osteomyelitis: what have we learned from 30 years of clinical trials? International Journal of Infectious Diseases, 9(3), 127138. https://doi.org/10.1016/j.ijid.2004.09.009CrossRefGoogle ScholarPubMed
Lerot, L., & Low, P. F. (1976). Effect of swelling on the infrared absorption spectrum of montmorillonite. Clays and Clay Minerals, 24, 191199. https://doi.org/10.1346/CCMN.1976.0240407CrossRefGoogle Scholar
Li, J., Cai, J., Zhong, L., Wang, H., Cheng, H., & Ma, Q. (2018). Adsorption of reactive dyes onto chitosan/montmorillonite intercalated composite: multi-response optimization, kinetic, isotherm and thermodynamic study. Water Science and Technology, 77(11), 25982612. https://doi.org/10.2166/wst.2018.221CrossRefGoogle ScholarPubMed
Maes, A., & Cremers, A. (1977). Charge density effects in ion exchange. Part 1.—Heterovalent exchange equilibria. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 73, 1807. https://doi.org/10.1039/f19777301807CrossRefGoogle Scholar
Maes, A., Marynen, P., & Cremers, A. (1977). Stability of metal uncharged ligand complexes in ion exchangers. Part 1.— Quantitative characterization and thermodynamic basis. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 73, 12971301. https://doi.org/10.1039/F19777301297CrossRefGoogle Scholar
Nagelschmidt, G. (1936). On the lattice shrinkage and structure of montmorillonite. Zeitschrift für Kristallographie-Crystalline Materials, 93(1), 481487. https://doi.org/10.1524/zkri.1936.93.1.481CrossRefGoogle Scholar
Namazi, H., & Belali, S. (2016). Starch-g-lactic acid/montmorillonite nanocomposite: Synthesis, characterization and controlled drug release study. Starch - Stärke, 68(3-4), 177187. https://doi.org/10.1002/star.201400226CrossRefGoogle Scholar
Nascimento, A. R. D., Alves, J. A. B. L. R., Melo, M. A. D. F., Melo, D. M. D. A., Souza, M. J. B. D., & Pedrosa, A. M. G. (2015). Effect of the acid treatment of montmorillonite clay in the oleic acid esterification reaction. Materials Research, 18, 283287. https://doi.org/10.1590/1516-1439.293014CrossRefGoogle Scholar
Neumann, M. G., Gessner, F., Schmitt, C. C., & Sartori, R. (2002). Influence of the layer charge and clay particle size on the interactions between the cationic dye methylene blue and clays in an aqueous suspension. Journal of Colloid and Interface Science, 255(2), 254259. https://doi.org/10.1006/jcis.2002.8654CrossRefGoogle Scholar
Palkova, H., Hronsky, V., Jankovic, L., & Madejova, J. (2013). The effect of acid treatment on the structure and surface acidity of tetraalkylammonium-montmorillonites. Journal of Colloid and Interface Science, 395, 166175. https://doi.org/10.1016/j.jcis.2012.12.027CrossRefGoogle ScholarPubMed
Pesquera, C., González, F., Benito, I., Blanco, C., Mendioroz, S., & Pajares, J. (1992). Passivation of a montmorillonite by the silica created in acid activation. Journal of Materials Chemistry, 2(9), 907911. https://doi.org/10.1039/jm9920200907CrossRefGoogle Scholar
Rivera, A., Valdes, L., Jimenez, J., Perez, I., Lam, A., Altshuler, E., de Menorval, L. C., Fossum, J. O., Hansen, E. L., & Rozynek, Z. (2016). Smectite as ciprofloxacin delivery system: Intercalation and temperature-controlled release properties. Applied Clay Science, 124, 150156. https://doi.org/10.1016/j.clay.2016.02.006CrossRefGoogle Scholar
Ronald, F. B., Calvin, B. G., William, J., Collins, S., & Brydon, J. E. (2001). A geochemical classification for granitic rocks. Journal of Petroloogy, 42(11), 20332048. https://doi.org/10.1093/petrology/42.11.2033Google Scholar
Saikia, B. J., Parthasarathy, G., Borah, R. R., & Borthakur, R. (2016). Raman and FTIR spectroscopic evaluation of clay minerals and estimation of metal contaminations in natural deposition of surface sediments from brahmaputra river. International Journal of Geosciences, 7(7), 873883. https://doi.org/10.4236/ijg.2016.77064CrossRefGoogle Scholar
Shimodat, S., & Brydon, J. E. (1971). I.R. studies of some inter-stratified minerals of mica and montmorillonite. Clays and Clay Minerals, 19(1), 6166. https://doi.org/10.1346/CCMN.1971.0190107CrossRefGoogle Scholar
Swartzen-Allen, S. L., & Matijevic, E. (1974). Surface and colloid chemistry of clays. Chemical Reviews, 74(3), 385400. https://doi.org/10.1021/cr60289a004CrossRefGoogle Scholar
Takahashi, T., & Yamaguchi, M. (1991). Host-guest interactions between swelling clay minerals and poorly water-soluble drugs. II. solubilization of griseofulvin by complex formation with a swelling clay mineral. Journal of Colloid and Interface Science, 146(2), 283297. https://doi.org/10.1016/0021-9797(91)90219-XCrossRefGoogle Scholar
Temuujin, J., Jadambaa, T., Burmaa, G., Erdenechimeg, S., Amarsanaa, J., & Mackenzie, K. J. D. (2004). Characterisation of acid activated montmorillonite clay from Tuulant (Mongolia). Ceramics International, 30(2), 251255. https://doi.org/10.1016/s0272-8842(03)00096-8CrossRefGoogle Scholar
Wu, Q. F., Zhang, T., Li, Z., Hong, H. L., Yin, K., Jean, J. S., & Jiang, W. T. (2014). Using probing compounds to investigate adsorption mechanism of ciprofloxacin on montmorillonite. Materials Technology, 29(sup3), B100–B107. https://doi.org/10.1179/1753555714y.0000000154CrossRefGoogle Scholar
Wu, L. M., Tong, D. S., Li, C. S., Ji, S. F., Lin, C. X., Yang, H. M., Zhong, Z. K., Xu, C. Y., Yu, W. H., & Zhou, C. H. (2016). Insight into formation of montmorillonite-hydrochar nanocomposite under hydrothermal conditions. Applied Clay Science, 119, 116125. https://doi.org/10.1016/j.clay.2015.06.015CrossRefGoogle Scholar
Wu, L. M., Lv, G. C., Liu, M., & Wang, D. Y. (2017). Drug release material hosted by natural montmorillonite with proper modification. Applied Clay Science, 148, 123130. https://doi.org/10.1016/j.clay.2017.07.034CrossRefGoogle Scholar
Yang, J. H., Lee, J. H., Ryu, H. J., Elzatahry, A. A., Alothman, Z. A., & Choy, J.-H. (2016). Drug–clay nanohybrids as sustained delivery systems. Applied Clay Science, 130, 2032. https://doi.org/10.1016/j.clay.2016.01.021CrossRefGoogle Scholar
Yoshida, S., & Asai, M. (1959). Infrared spectra of pytazine-and pyridine-carboxylic acid and their derivatives. Chemical and Pharmaceutical Bulletin, 7(2), 162171. https://doi.org/10.1248/cpb.7.162CrossRefGoogle Scholar