Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-10T20:37:27.830Z Has data issue: false hasContentIssue false

Surface properties of illite-smectite minerals as detected by interactions with rhodamine 6G dye

Published online by Cambridge University Press:  01 January 2024

V. Šucha
Affiliation:
Department of Geology of Mineral Deposits, Comenius University, Mlynská dolina G, 842 15 Bratislava, Slovak Republic
A. Czímerová*
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Science, SK-845 36 Bratislava, Slovak Republic
J. Bujdák
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Science, SK-845 36 Bratislava, Slovak Republic
*
* E-mail address of corresponding author: adriana.czimerova@savba.sk

Abstract

Interactions between smectite clay minerals and various organic dyes have been studied extensively, but little information has accumulated from dye interactions with mixed-layer illite-smectite (I-S) minerals, especially regarding relationships with clay layer expandability, layer charge, particle size/shape, and molecular aggregation of organic dye molecules. The purpose of this study was to investigate the surface interactions of a set of mixed-layer illite-smectites from different geological environments with Rhodamine 6G dye. The samples used have different amounts of expandable smectite interlayers, different particle size and/or shape, and different layer-charge density at the surface. Five smectites with differences in layer charge and some non-expandable layer silicates were also tested. The interactions detected by UV-vis spectroscopy show no reaction between R6G and non-expandable minerals (kaolinite, mica), and intense reactions forming H-aggregates and monomers with smectites and illite-smectites. The intensity of H-aggregate formation increases with increase in the layer charge of smectites. Mixed-layer illite-smectites interact with R6G more intensely than do smectites. H-aggregate and monomer formation increases with the illitization process for randomly ordered illite-smectites (R = 0) and decreases in the course of illitization for the ordered illite-smectites (R > 0).

Type
Article
Copyright
Copyright © The Clay Minerals Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonov, L. and Nedeltcheva, D., 1996 Resolution of overlapping bands — An idea for quantitative analysis of undefined mixtures Analytical Letters 29 20552069 10.1080/00032719608000811.CrossRefGoogle Scholar
Antonov, L. and Nedeltcheva, D., 2000 Resolution of overlapping UV-Vis absorption bands and quantitative analysis Chemical Society Reviews 29 217227 10.1039/a900007k.CrossRefGoogle Scholar
Bergman, K. and O’Konski, C.T., 1963 A spectroscopic study of methylene blue monomer, dimer, and complexes with montmorillonite Journal of Physical Chemistry B 67 21692177 10.1021/j100804a048.CrossRefGoogle Scholar
Breen, C. and Loughin, H., 1994 The competitive adsorption of methylene blue on to Na-montmorillonite from binary solution with n-alkyltrimethylammonium surfactants Clay Minerals 29 775783.CrossRefGoogle Scholar
Bujdák, J., 2006 Effect of the layer charge of clay minerals on optical properties of organic dyes. A review Applied Clay Science 34 5873 10.1016/j.clay.2006.02.011.CrossRefGoogle Scholar
Bujdák, J. and Komadel, P., 1997 Interaction of methylene blue with reduced charge montmorillonite Journal of Physical Chemistry B 101 90659068 10.1021/jp9718515.CrossRefGoogle Scholar
Bujdák, J. Janek, J.M. Madejová, J. and Komadel, P., 1998 Methylene blue interactions with reduced-charge smectites Clays and Clay Minerals 49 244254 10.1346/CCMN.2001.0490307.CrossRefGoogle Scholar
Bujdák, J. Iyi, N. and Fujita, T., 2002 The aggregation of methylene blue in montmorillonite dispersions Clay Minerals 37 121133 10.1180/0009855023710022.CrossRefGoogle Scholar
Bujdák, J. Iyi, N. and Sasai, R., 2004 Spectral properties, formation of dye molecular aggregates and reactions in rhodamine 6G/layered silicates dispersions Journal of Physical Chemistry B 108 44704477 10.1021/jp037607x.CrossRefGoogle Scholar
Cenens, J. and Schoonheydt, R.A., 1988 Visible spectroscopy of methylene blue on hectorite, laponite B and barasym in aqueous suspension Clays and Clay Minerals 36 214224 10.1346/CCMN.1988.0360302.CrossRefGoogle Scholar
Czímerová, A. Jankovič, L. and Bujdák, J., 2004 Effect of the exchangeable cations on the spectral properties of methylene blue in clay dispersions Journal of Colloid and Interface Science 274 126132 10.1016/j.jcis.2003.10.025.CrossRefGoogle ScholarPubMed
Czímerová, A. Bujdák, J. and Dohrmann, R., 2006 Traditional and novel methods for estimating the layer charge of smectites Applied Clay Science 34 213 10.1016/j.clay.2006.02.008.CrossRefGoogle Scholar
del Monte, F. and Levy, D., 1999 Identification of Oblique and Coplanar Inclined Fluorescent J-Dimers in Rhodamine 110 Doped Sol-Gel-Glasses Journal of Physical Chemistry B 103 80808086 10.1021/jp991491g.CrossRefGoogle Scholar
del Monte, F.J. Mackenzie, D. and Levy, D., 2000 Rhodamine fluorescent dimers adsorbed on the porous surface of silica gels Langmuir 16 73777382 10.1021/la000540+.CrossRefGoogle Scholar
Eberl, D.D. Środoń, J. Northrop, H.R., Davis, J.A. and Hayes, K.F., 1986 Potassium fixation in smectite by wetting and drying Geochemical Processes at Mineral Surfaces Washington, D.C. American Chemical Society 296326 10.1021/bk-1987-0323.ch014.Google Scholar
Eberl, D.D. Środoń, J. Lee, M. Nadeau, P.H. and Northrop, H.R., 1987 Sericite from the Silverton caldera, Colorado: Correlation among structure, composition, origin, and particle thickness American Mineralogist 72 914935.Google Scholar
Gabis, V., 1963 Etude mineralogique et geochimique de la serie sedimentaire oligicene du Velay Bulletin de la Societe Francaise de Mineralogie et Cristallographie 86 315354 10.3406/bulmi.1963.5663.CrossRefGoogle Scholar
Honty, M. Uhlík, P. Šucha, V. Čaplovičová, M. Franců, J. and Clauer, N., 2004 Smectite to illite transformation in salt-bearing volcanoclastics (the East Slovak Basin) Clays and Clay Minerals 52 533551 10.1346/CCMN.2004.0520502.CrossRefGoogle Scholar
Jackson, M.L., 1975 Soil Chemical Analysis — Advanced Course 2nd Wisconsin, USA Madison.Google Scholar
Kikteva, T. Star, D. Zhao, Z.H. Baisley, T.L. and Leach, G.W., 1999 Molecular orientation, aggregation, and order in rhodamine films at the fused silica/air interface Journal of Physical Chemistry B 103 11241133 10.1021/jp9835824.CrossRefGoogle Scholar
Kraus, I., 1989 Kaolíny a kaolinitové íly Západnch Karpát Západné Karpaty Bratislava Geologick ustav Dionza Štúra 1287.Google Scholar
Kraus, I. Šamajová, E. Šucha, V. Lexa, J. and Hroncová, Z., 1994 Diagenetic and hydrothermal of volcanic rocks into clay minerals and zeolites (Kremnické vrchy Mts., The Western Carpathians) Geologica Carpathica 45 151158.Google Scholar
Neumann, M.G. Gessner, F. Schmitt, C.C. and Sartori, R., 2002 Influence of the layer charge and clay particle size on the interactions between the cationic dye methylene blue and clays in an aqueous suspension Journal of Colloid and Interface Science 255 254259 10.1006/jcis.2002.8654.CrossRefGoogle Scholar
Rajec, P. Šucha, V. Eberl, D.D. Środoń, J. and Elsass, F., 1999 Effect of illite particle shape on cesium sorption Clays and Clay Minerals 47 755760 10.1346/CCMN.1999.0470610.CrossRefGoogle Scholar
Sanchez, C. Lebeau, B. Chaput, F. and Boilot, J.-P., 2003 Optical properties of functional hybrid organic-inorganic nanocomposites Advanced Materials 15 19691994 10.1002/adma.200300389.CrossRefGoogle Scholar
Sanchez, C. Julián, B. Belleville, P. and Poppal, M., 2005 Application of hybrid organic-inorganic nanocomposites Journal of Material Chemistry 15 35593592 10.1039/b509097k.CrossRefGoogle Scholar
Schulz-Ekloff, G. Wohrleb, D. van Duffel, B. and Schoonheydt, R.A., 2002 Chromophores in porous silicas and minerals: preparation and optical properties Microporous and Mesoporous Materials 51 91138 10.1016/S1387-1811(01)00455-3.CrossRefGoogle Scholar
Środoń, J., 1984 X-ray diffraction of illitic materials Clays and Clay Minerals 32 337349 10.1346/CCMN.1984.0320501.CrossRefGoogle Scholar
Środoń, J. and Elsass, F., 1994 Effect of the shape of fundamental particles on XRD characteristics of illitic minerals European Journal of Mineralogy 6 113122 10.1127/ejm/6/1/0113.CrossRefGoogle Scholar
Środoń, J. Andreolli, C. Elsass, F. and Robert, M., 1990 Direct high-resolution transmission electron microscopic measurement of expandability of mixed-layer illite/smectite in bentonite rocks Clays and Clay Minerals 38 373379 10.1346/CCMN.1990.0380406.CrossRefGoogle Scholar
Šucha, V. Širáňová, V. and Toman, B., 1990 Illite as indicator of post-sedimentary alteration of the Permian sediments from the Northern Gemericum Geologica Carpathica 41 547560.Google Scholar
Šucha, V. Kraus, I. Mosser, C.h. Hroncová, Z. Soboleva, K.A. and Širáňová, V., 1992 Mixed-layer illite/smectite from Dolná Ves hydrothermal deposit, Kremnica Mountains, The West Carpathians Geologica Carpathica 43 1319.Google Scholar
Šucha, V. Kraus, I. Gerthofferová, H. Peteš, J. and Serekovš, M., 1993 Smectite to illite conversion in bentonites and shales of the East Slovak Basin Clay Minerals 28 243253 10.1180/claymin.1993.028.2.06.CrossRefGoogle Scholar
Šucha, V. Środoń, J. Elsass, F. and McHardy, W.J., 1996 Particle shape versus coherent scattering domain of illite/smectite: Evidence from HRTEM of Dolná Ves clays Clays and Clay Minerals 44 665671 10.1346/CCMN.1996.0440509.CrossRefGoogle Scholar
Takagi, S. Eguchi, M. Tryk, D.A. and Inoue, H., 2006 Porphyrin photochemistry in inorganic/organic hybrid materials: Clays, layered semiconductors, nanotubes, and mesoporous materials Journal of Photochemistry and Photobiology C: Photochemistry Reviews 7 104126 10.1016/j.jphotochemrev.2006.04.002.CrossRefGoogle Scholar
Yariv, S. and Lurie, D., 1971 Metachromasy in clay minerals. Part I. Sorption of methylene blue by montmorillonite Israel Journal of Chemistry 9 537552 10.1002/ijch.197100070.CrossRefGoogle Scholar