Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-21T03:09:15.606Z Has data issue: false hasContentIssue false

Structural Analysis of Sepiolite by Selected Area Electron Diffraction—Relations with Physico-Chemical Properties

Published online by Cambridge University Press:  01 July 2024

M. Rautureau
Affiliation:
Laboratoire de Cristallographie, Université d'Orléans, et Centre de Recherche sur les Solides á Organisation Cristalline Imparfaite C.N.R.S., Orléans, France
C. Tchoubar
Affiliation:
Laboratoire de Cristallographie, Université d'Orléans, et Centre de Recherche sur les Solides á Organisation Cristalline Imparfaite C.N.R.S., Orléans, France

Abstract

The electron structural analysis of a Madagascar sepiolite (Ampandrandava) was carried out by selected area electron diffraction obtained from monocristals. Fourier projections, derived from the experimental intensity of Okl, hOl and hkO reflections, show that the Mg2+ cations on the edges of the sheets are distributed between two sites. Correlatively the water molecules bound to these Mg2+ occupy two distinct positions. These principal structural differences with the Brauner and Preisinger model explain details of the i.r. spectra during the desorption of water or the adsorption of polar molecules. The differences between the two models can be considered as a consequence of treating the mineral in vacuum.

Type
Research Article
Copyright
Copyright © 1976 The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work is a part of the Doctoral Thesis of M. Michel Rautureau, 1974, University of Orleans, France.

Quincunx “A disposition of five objects so placed that four occupy the corners and the fifth the center of a square or rectangle” (Oxford Universal Dictionary, 3rd Edn., revised 1955, p. 1642).

References

Allpress, J. G. and Sanders, J. V., (1973) The direct observation of the structures of real crystals by lattice imaging J. appl. Crystallogr. 6 165190.CrossRefGoogle Scholar
Brauner, L. and Preisinger, A., (1956) Struktur und entstehung des sepioliths Tschermaks Min. Petr. Mitt. 6 120140.CrossRefGoogle Scholar
Brindley, G. W., (1959) X-Ray and electron diffraction data for sepiolite Am. Miner. 44 495500.Google Scholar
Caillere, S., (1936) Thermal studies Bull. Soc. Franc. Miner. 59 353374.Google Scholar
Cowley, J. M. and Moodie, A. F., (1962) The scattering of electrons by thin crystals J. Phys. Soc. Japan. 17 8691.Google Scholar
Cowley, J. M. (1968) Acta geologica et geographica Universitatis Comenianae. No. 14. Slovenské Pedagogické Nakladatalastvo, Bratislava.Google Scholar
Martin-Vivaldi, J. L. and Cano-Ruiz, J. (1955) Contribution to the study of sepiolite: some consideration regarding the mineralogical formula. Clays and Clay Minerals, 4th Nat. Conf. U.S., N.R.C., 1956. 173176.Google Scholar
Martin-Vivaldi, J. L. and Robertson, R. H. S. (1971) The Electron Optical Investigation of Clays (Edited by Gard, J. A.) , pp. 255275. London Mineralogical Society.CrossRefGoogle Scholar
Menter, J. W. (1956) Electron microscopy. Proc. Stockholm Conf. (Edited by Almquist, and Wiksel, ) pp. 8893.Google Scholar
Hiroshi, N. Shimoda, S. and Sudo, T., (1974) On dehydration of bound water of sepiolite Clays and Clay Minerals 22 285293.Google Scholar
Nagy, B. and Bradley, W. F., (1955) The structural scheme of sepiolite Am. Miner. 40 885892.Google Scholar
Pinsker, Z. G. (1968) Physical principles and certain results of the modern electron diffraction structure analysis. Acta geologica et geographica Universitatis Comenianae 14. Slovenské pedagogické nakladatalastvo, Bratislava.Google Scholar
Preisinger, A., (1963) Sepiolite and related compounds: its stability and application Clays and Clay Minerals, Proc. Nat. Conf Oxford Pergamon Press 365371.Google Scholar
Prost, R., (1973) Spectre infra-rouge de l’eau présente dans l’attapulgite et dans la sépiolite Bull. Gr. Franç. Argiles. 25 5363.CrossRefGoogle Scholar
Rautureau, M. and Tchoubar, C., (1972) Etude morphologique de la sépiolite par microscopie électronique J. Microsc. 14 139146.Google Scholar
Rautureau, M. Tchoubar, C. and Mering, J., (1972) Analyse structurale de la sépiolite par microdiffraction électronique C. r. Acad. Sci. 274 269271.Google Scholar
Rautureau, M., Tchoubar, C. and Mering, J. (1972) Analyse structurale de la sépiolite à partir des données de la diffraction électronique. Int. Clay Conf. Madrid (Edited by Serratosa, J. M.) pp. 115121.Google Scholar
Serna, J. C. (1973) Naturaleza y propriedades de la superficie de la sepiolita. Thesis, University of Madrid.Google Scholar
Serna, J. C. Rautureau, M. Prost, R. Tchoubar, C. and Serratosa, J. M., (1974) Etude de la sépiolite à l’aide des données de la microscopie électronique, de l’analyse thermopondérale et de la spectroscopie infra-rouge Bull. Groupe Franç. Argiles 26 153163.CrossRefGoogle Scholar
Tchoubar, C. Rautureau, M. Clinard, C. and Ragot, J. P., (1973) Technique d’inclusion appliquée à l’étude des silicates lamellaires et fibreux J. Microsc. 18 147154.Google Scholar
Zvyagin, B. B., (1967) Electron Diffraction Analysis of Clay Mineral Structures New York Plenum Press.CrossRefGoogle Scholar