Hostname: page-component-788cddb947-tr9hg Total loading time: 0 Render date: 2024-10-10T21:23:21.316Z Has data issue: false hasContentIssue false

Sediment-Hosted Kaolin Deposit from Çakmaktepe (Uşak, Turkey): its Mineralogy, Geochemistry, and Genesis

Published online by Cambridge University Press:  01 January 2024

A. Yildiz
Affiliation:
Engineering Faculty, Department of Geological Engineering, Afyon Kocatepe University, Afyonkarahisar, Turkey
C. Başaran*
Affiliation:
Engineering Faculty, Department of Geological Engineering, Afyon Kocatepe University, Afyonkarahisar, Turkey
*
*E-mail address of corresponding author: cbasaran@aku.edu.tr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Because of their geochemical properties, the Çakmaktepe (Uşak) kaolin deposits have been considered as primary. New sedimentological, mineralogical, and geochemical data suggest that the Çakmaktepe kaolins are secondary deposits of sedimentary processes after hydrothermal alteration of the source rocks. The kaolins in the Çakmaktepe deposit were formed from the hydrothermal alteration of calcalkaline Karaboldere volcanics (KBV). The kaolinized materials were then reworked and accumulated in a lacustrine basin. The argillic alteration zones were associated with faults, and lateral zonation of minerals was observed in the KBV. Smectite was the major phyllosilicate in the ‘outer zone’. The alteration mineralogy of the ‘inner zone’ was similar to that of the Çakmaktepe kaolins and consisted mainly of kaolinite with minor amounts of smectite and alunite. The trace-element abundances in the kaolinized volcanics and the Çakmaktepe kaolins indicated hypogene conditions. The δ18O values of the Çakmaktepe kaolins ranged from 0.2 to 5.92%, which indicated that the Çakmaktepe kaolinites were formed at temperatures between 92 and 156°C, and the δD values ranged from −91.68 to −109.45‰. The irregular edge-to-face morphology, the variation in grain-size, a few broken crystals of kaolinite, the deficiency of dissolution-replacement and crystallization mechanisms, and the the low sphericity, very angular, and poorly sorted quartz crystals in the kaolins all result from transport processes. The sedimentary structures, including trough cross-lamination, tool marks, and load casts, indicate transportation by turbulent waters and deposition of kaolin layers in a shallow lake.

Type
Article
Copyright
Copyright © Clay Minerals Society 2015

References

Arslan, M. Kadir, S. Abdioğlu, E. and Kolayl, H., 2006 Origin and formation of kaolin minerals in saprolite of Tertiary alkaline volcanic rocks, Eastern Pontides, NE Turkey Clay Minerals 41 597617.CrossRefGoogle Scholar
Aydoğan, M.S. Çoban, H. Bozcu, M. and Akıncı, T., 2006 Geochemical and mantle-like isotopic (Nd, Sr) composition of the Baklan Granite from the Muratdağı Region (Banaz, Uşak), western Turkey: Implications for input of juvenile magmas in the source domains of western Anatolia Eocene Miocene granites Journal of Asian Earth Sciences 33 155176.CrossRefGoogle Scholar
Başaran, C. (2009) Hallaçlar (Banaz-Uşak) kaolen yataklarının jeolojik, mineralojik ve jeokimyasal özelliklerinin araştırılması. MSc thesis, Afyon Kocatepe Universitesi, 139 pp., Afyonkarahisar, Turkey (in Turkish, unpublished).Google Scholar
Bauluz, B. Mayayo, M.J. Yuste, A. and Gonzalaez Lopez, J.M., 2008 Genesis of kaolinite from Albian sedimentary deposits of the Iberian Range (NE Spain): analysis by XRD, SEM and TEM Clay Minerals 43 459475.CrossRefGoogle Scholar
Boulvais, P. Vallet, J.M. Esteoule-Choux, J. Fourcade, S. and Martineau, F., 2000 Origin of kaolinization in Brittany (NW France) with emphasis on deposits over granite: stable isotopes (O, H) constraints Chemical Geology 168 211223.CrossRefGoogle Scholar
Bozkurt, E. and Mittwede, S.K., 2005 Introduction: evolution of Neogene extensional tectonics of western Turkey Geodinamica Acta 18 153165.CrossRefGoogle Scholar
Bozkurt Çiftçi, N. and Bozkurt, E., 2009 Pattern of normal faulting in the Gediz Graben, SW Turkey Tectonophysics 473 234260.CrossRefGoogle Scholar
Bristow, C.M. (1987) World kaolins: Genesis, exploitation and application. Industrial Minerals, July, 4559.Google Scholar
Brooks, R.A. Ferrell, R.E. Jr., 1970 The lateral distribution of clay minerals in Lake Pontchartrain and Maurepas, Louisiana Journal of Sedimentary Petrology 40 855863.Google Scholar
Brown, G., 1972 Montmorillonites X-ray Identification and Crystal Structures of Clay Minerals London Mineral Society.Google Scholar
Brown, G. Brindley, G.W., Brindley, G. W. and Brown, G., 1980 X-ray diffraction procedures for clay mineral identification Crystal Structure of Clay Minerals and their X-ray Identification London Mineralogical Society.Google Scholar
Christidis, G.E., 1998 Comparative study of the mobility of major and trace elements during alteration of an andesite and a rhyolite to bentonite, in the islands of Milos and Kimolos, Aegean, Greece Clays and Clay Minerals 46 379399.CrossRefGoogle Scholar
Christidis, G. and Markopoulos, T., 1995 Mechanisms of formation of kaolinite and halloysite in the bentonite deposits of Milos Island, Greece Chemie der Erde 55 315329.Google Scholar
Christidis, G. Scott, P.W. and Marcopoulas, T., 1995 Origin of the bentonite deposits of Eastern Milos and Kimolos, Greece, geology, geological, mineralogical and geochemical evidence Clays and Clay Minerals 43 6377.CrossRefGoogle Scholar
Chung, F.H., 1974 Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures Journal of Applied Crystallography 7 526531.CrossRefGoogle Scholar
Churchman, G.J. Whitton, J.S. Claridge, G.G. and Theng, B.K.G., 1984 Intercalation method using formamide for differentiating halloysite from kaolinite Clays and Clay Minerals 32 241248.CrossRefGoogle Scholar
Corfu, F. and Davis, D.W., 1991 Comment on “Archaean hydrothermal zircon in the Abitibi greenstone belt: constraints on the timing of gold mineralisation” by J.C. Claoue-Long, R.W. King and R. Kerrich Earth and Planetary Science Letters 104 545552.CrossRefGoogle Scholar
Cravero, F. Domínquez, E. and Murray, H.H., 1991 Valores δ18O vs. δD en caolinitas indicatores de un clima templadohumedo para el Jurasico superior-Cretcio inferior de la Patagonia Revista de la Asociacion Geologica Argentina 46 2025.Google Scholar
Cravero, F. Domínquez, E. and Iglesias, C., 2001 Genesis and applications of the Cerro Rubio kaolin deposit, Patagonia (Argentina) Applied Clay Science 18 157172.CrossRefGoogle Scholar
Çelik, M. Karakaya, N. and Temel, A., 1999 Occurrences of clay minerals in hydrothermally altered volcanic rocks, Eastern Pontides, Turkey Clays and Clay Minerals 47 708717.CrossRefGoogle Scholar
Davraz, A., 2008 Hydrogeochemical and hydrogeological investigations of thermal waters in the Usak area Environmental Geology 54 615628.CrossRefGoogle Scholar
Dill, H.G., 2010 The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium Earth-Science Reviews 100 1420.CrossRefGoogle Scholar
Dill, H.G. Bosse, H.R. Henning, K.H. Fricke, A. and Ahrend, H., 1997 Mineralogical and chemical variations in hypogene and supergene kaolin deposits in a mobile fold belt in the Central Andes of NW Peru Mineralium Deposita 32 149163.CrossRefGoogle Scholar
Dill, H.G. Kus, J. Dohrmann, R. and Tsoy, Y., 2008 Supergene and hypogene alteration in the dual-use kaolinbearing coal deposit Angren, SE Uzbekistan International Journal of Coal Geology 75 225240.CrossRefGoogle Scholar
Dominguez, E., 1990 δ18O ‰, δ34S ‰, δD ‰en pirita caolinita como indicators de procesos hidrotemales magmaticos en Andacollo, Neuquen. (nota breve) Revista de la Asociacion Geologica Argentina 45 403406.Google Scholar
Dominguez, E. Iglesias, C. and Dondi, M., 2008 The geology and mineralogy of a range of kaolins from the Santa Cruz and Chubut Provinces, Patagonia (Argentina) Applied Clay Science 40 124142.CrossRefGoogle Scholar
Dominquez, E.A. Iglesias, C. Dondi, M. and Murray, H.H., 2010 Genesis of the La Espingarda kaolin deposit in Patagonia Applied Clay Science 47 290302.CrossRefGoogle Scholar
DPT (2001) State Planning Organization of Turkey, 8th Five-Year Development Plan, Mining Special Expert Comission Report, Volume 1, Industrial Minerals Sub-Comission, Ceramic Clays-Kaolin-Pyrophyllite-Wollastonite-Talc Group, 224 pp., Ankara (in Turkish).Google Scholar
Dunham, R.J., Ham, W.E., 1962 Classification of carbonate rocks according to depositional texture Classification of Carbonate Rocks Tulsa, Oklahoma, USA American Association of Petroleum Geologists.Google Scholar
Ece, O.I. and Nakagawa, Z.E., 2003 Alteration of volcanic rocks and genesis of kaolin deposits in the Sile Region, northern Istanbul, Turkey. Part II: Differential mobility of elements Clay Minerals 38 529550.CrossRefGoogle Scholar
Ece, O.I. and Schroeder, P.A., 2007 Clay mineralogy and chemistry of halloysite and alunite deposits in the Turplu area, Balıkesir, Turkey Clays and Clay Minerals 55 1835.CrossRefGoogle Scholar
Ece, O.I. Nakagawa, Z.E. and Schroeder, P.A., 2003 Alteration of volcanic rocks and genesis of kaolin deposits in the Sile Region, northern Istanbul, Turkey. I: Clay mineralogy Clays and Clay Minerals 51 675688.CrossRefGoogle Scholar
Ece, O.I. Schroeder, P.A. Smilley, M. and Wampler, M., 2008 Acid-sulphate alteration of volcanics rocks and genesis of halloysite and alunite deposits in the Biga Peninsula, NW Turkey Clay Minerals 43 281315.CrossRefGoogle Scholar
Ece, O.I. Ekinci, B. Schroeder, P.A. Crowe, D. and Esenli, F., 2013 Origin of the Düvertepe kaolin-alunite deposits in Simav Graben, Turkey: timing and styles of hydrothermal mineralization Journal of Volcanology and Geothermal Research 255 5778.CrossRefGoogle Scholar
Ekosse, G., 2000 The Makoro kaolin deposit, southeastern Botswana: its genesis and possible industrial applications Applied Clay Science 16 301320.CrossRefGoogle Scholar
Ercan, T. Dinçel, A. Metin, S. Türkecan, A. and Günay, E., 1978 Uşak yöresindeki Neojen havzaların jeolojisi Türkiye Jeoloji Bülteni 21 97106.Google Scholar
Ercan, T. Dinçel, A. and Günay, E., 1979 Uşak volkanitlerinin petrolojisi ve plaka tektoniği açısından Ege Bölgesindeki yeri Türkiye Jeoloji Bülteni 22 185198.Google Scholar
Ercan, T. Satır, M. Sevin, D. and Türkecan, A., 1996 BatıAnadolu’daki Tersiyer ve Kuvaterner yaslı Volkanik Kayaçlarda yeni yapılan radyometrik yas ölçümlerinin yorumu Maden Tetkik ve Arama Dergisi 119 103112.Google Scholar
Erkoyun, H. and Kadir, S., 2011 Mineralogy, micromorphology, geochemistry and genesis of hydrothermal kaolinite deposit and altered Miocene host volcanites in the Hallaçlar area, Uşak, western Turkey Clay Minerals 46 421448.CrossRefGoogle Scholar
Floyd, P.A. and Winchester, J.A., 1978 Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements Chemical Geology 21 291306.CrossRefGoogle Scholar
Fujii, N., Kayabalı, İ., and Saka, A.H. (1995) Data book of ceramic raw materials of selected areas in Turkey. Monograph Series No. 1, General Directorate of Mineral Research and Exploration, 144 pp., Ankara.Google Scholar
Galan, E., Mattias, P.P., and Galvan, J. (1977) Correlation about kaolin genesis and age of some Spanish kaolinites. Proceedings of the 8th International Symposium and Meeting on Alunite (Galen, E., editor). Ministerio de Industria y Energia, Madrid, K-8, 8 pp.Google Scholar
Genna, D. Gaboury, D. and Roy, G., 2014 Evolution of a volcanogenic hydrothermal system recorded by the behavior of LREE and Eu: Case study of the Key Tuffite at Bracemac—McLeod deposits, Matagami, Canada Ore Geology Reviews 63 160177.CrossRefGoogle Scholar
Gilg, H.A. Hülmeyer, S. Miller, H. and Sheppard, S.M.F., 1999 Supergene origin of the Lastarria kaolin deposit, South-Central Chile, and paleoclimatic implications Clays and Clay Minerals 47 201211.CrossRefGoogle Scholar
Grecco, L.E. Marfil, S.A. and Maiza, P.J., 2012 Mineralogy and geochemistry of hydrothermal kaolins from the Adelita mine, Patagonia (Argentina); relation to other mineralization in the area Clay Minerals 47 131146.CrossRefGoogle Scholar
Hedenquist, J.W. Arrıbas, A. and Reynolds, T.J., 1998 Evolution of an intrusion-centered hydrothermal system: Far southeast-Lepanto porphyry and epithermal Cu-Au deposit, Philippines Economic Geology 93 373404.CrossRefGoogle Scholar
Hedenquist, J. Arribas, R. González-Urien, E., Hagemann, S. and Brown, P.E., 2000 Exploration for epithermal gold deposits Gold in 2000 Golden, Colorado, USA Society for Economic Geology.Google Scholar
Helvacı, C. (1986) Stratigraphic and structural evolution of the Emet Borate Deposits, Western Anatolia, Turkey. Dokuz Eylül University, İzmir, Turkey, Research Paper MM/JEO-86-8.Google Scholar
Henning, K.H. and Störr, H., 1986 Electron micrographs (TEM, SEM) of clays and clay minerals Berlin Akademia-Verlag 350.Google Scholar
Hesse, R., 1989 Silica diagenesis: Origin of inorganic and replacement cherts Earth-Science Reviews 26 253284.CrossRefGoogle Scholar
Hillier, S., Velde, B., 1995 Erosion, sedimentation and sedimentary origin of clays Origin and Mineralogy of Clays: Clays and Environment Berlin Springer.Google Scholar
Honty, M. Clauer, N. and Šucha, V., 2008 Rare-earth elemental systematic of mixed-layered illite-smectite from sedimentary and hydrothermal environments of the western Carpathians (Slovakia) Chemical Geology 249 167190.CrossRefGoogle Scholar
Hurst, V.J. and Pickering, S.M., 1997 Origin and classification of coastal-plain kaolins, southeastern USA, and the role of groundwater and microbial action Clays and Clay Minerals 45 274285.CrossRefGoogle Scholar
Jiang, S.Y., 2000 Controls on the mobility of high field strength elements (HFSE), U, and Th in an ancient submarine hydrothermal system of the Proterozoic Sullivan Pb—Zn—Ag deposit, British Columbia, Canada Geochemical Journal 34 341348.CrossRefGoogle Scholar
Jiang, N. Sun, S. Chu, X. Mizuta, T. and Ishiyama, D., 2003 Mobilization and enrichment of high-field strength elements during late- and post-magmatic processes in the Shuiquangou syenitic complex, Northern China Chemical Geology 200 117128.CrossRefGoogle Scholar
Jiang, S.Y. Wang, R.C. Xu, X.S. and Zhao, K.D., 2005 Mobility of high field strength elements (HFSE) in magmatic-, metamorphic-, and submarine hydrothermal systems Physics and Chemistry of the Earth 30 10201029.CrossRefGoogle Scholar
Kadir, S. and Akbulut, A., 2009 Mineralogy, geochemistry and genesis of the Taşoluk kaolinite deposits in Pre-Early Cambrian metamorphites and Neogene volcanites of Afyonkarahisar, Turkey Clay Minerals 44 89112.CrossRefGoogle Scholar
Kadir, S. and Kart, F., 2009 The occurrence and origin of the Söğüt kaolinite deposits in the Paleozoic Sarıcakaya granitegranodiorite complexes and overlying Neogene sediments (Bilecik, Northwestern Turkey) Clays and Clay Minerals 57 311329.CrossRefGoogle Scholar
Kadir, S. Erman, H. and Erkoyun, H., 2011 Mineralogical and geochemical characteristics and genesis of hydrothermal kaolinite deposits within Neogene volcanites, Kütahya (western Anatolia), Turkey Clays and Clay Minerals 59 250276.CrossRefGoogle Scholar
Kadir, S. and Erkoyun, H., 2012 Genesis of hydrothermal Karaçayır kaolinite deposits in Miocene volcanics and Paleozoic metamorphic rocks of the Uşak-Güre Basin, western Turkey Turkish Journal of Earth Sciences 22 444468.Google Scholar
Karakaya, M. Karakaya, N. and Temel, A., 2001 Kaolin occurrences in Erenler Dağı volcanics, Southwest Konya Province, Turkey International Geology Review 43/8 711722.CrossRefGoogle Scholar
Karakaya, N., 2009 REE and HFS element behaviour in the alteration facies of the Erenler Dağıvolcanics (Konya, Turkey) and kaolinite occurrence Journal of Geochemical Exploration 101 185208.CrossRefGoogle Scholar
Karakaya, M. Karakaya, N. Küpeli, and Yavuz, F., 2012 Mineralogy and geochemical behavior of trace elements of hydrothermal alteration types in volcanogenic massive sulfide deposits, NE Turkey Ore Geology Reviews 48 197224.CrossRefGoogle Scholar
Karaoğlu, Helvacı, C. and Ersoy, Y., 2010 Petrogenesis and 40 Ar/ 39 Ar geochronology of the volcanic rocks of the Uşak-Güre basin, western Türkiye Lithos 119 193210.CrossRefGoogle Scholar
Kelepertsis, A.E. and Esson, J., 1987 Major and trace element mobility in altered volcanic rocks near Stypsi, Lesbos, Greece and genesis of kaolin deposit Applied Clay Science 2 1128.CrossRefGoogle Scholar
Keller, W.D., 1976 Scanning electron micrographs of kaolins collected from diverse environments of origin — I Clays and Clay Minerals 24 107113.CrossRefGoogle Scholar
Keller, W.D., 1977 Scanning electron micrographs of kaolins collected from diverse environments of origin — IV. Georgia kaolin and kaolinizing source rocks Clays and Clay Minerals 25 311345.CrossRefGoogle Scholar
Keller, W.D. et al. ,Balasubramaniam, K.S. 1989 et al. , Scanning electron micrographs of clay minerals formed by weathering and other genetic process Weathering, its Products and Deposits SA., Athens Theophrastus Publications.Google Scholar
Kennedy, V.C. (1964) Sediment transported by Georgia streams. U.S.G.S. Water Supply Paper 1668, 54 pp.Google Scholar
Kitagawa, R. and Köster, H.M., 1991 Genesis of the Tirschenreuth kaolin deposit in Germany compared with the Kondachi deposit in Japan Clay Minerals 26 6179.CrossRefGoogle Scholar
Knauth, L.P., Heaney, P.J. Prewitt, C.T. and Gibbs, G.V., 1994 Petrogenesis of chert Silica: Physical Behavior, Geochemistry and Materials Applications Washington, D.C. Mineralogical Society of America.Google Scholar
Koçyiğit, A. and Deveci, Ş. (2007) Çukurören-Çobanlar (Afyon) arasınaki deprem kaynaklarının (Aktif fayların) belirlenmesi. The Project Report of The Scientific and Technical Research Council of Turkey (TÜBİTAK) 106Y209, 71 pp, Turkey (in Turkish).Google Scholar
Konak, N. (2002) Türkiye jeoloji haritası İzmir Paftası. Maden Tetkik Arama Genel Müdürlüğü, 1 p., Ankara (in Turkish).Google Scholar
MacEwan, D.M.C. Wilson, M.J., Brindley, G.W. and Brown, G., 1980 Interlayer and intercalation complexes of clay minerals Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society.Google Scholar
MacLean, W.I. and Kranidiotis, P., 1987 Immobile elements as monitors of mass transfer in hydrothermal alteration: Phelps Dodge massive sulfide deposit, Matagami, Quebec Economic Geology 82 951962.CrossRefGoogle Scholar
Marfil, S.A. Maiza, P.J. Cardellach, E. and Corbella, M., 2005 Origin of kaolin deposits in the Rio Negro Province, Argentine Clay Minerals 40 283293.CrossRefGoogle Scholar
Marfil, S.A. Maiza, P.J. and Montecchiari, N., 2010 Alteration zonation in the Loma Blanca kaolin deposit, Los Menucos, Province of Rio Negro, Argentina Clay Minerals 45 157169.CrossRefGoogle Scholar
Marin-Carbonne, J. Robert, F. and Chaussidon, M., 2014 The silicon and oxygen isotope compositions of Precambrian cherts: A record of oceanic paleo-temperatures? Precambrian Research 247 223234.CrossRefGoogle Scholar
Marumo, K. Matsuhisa, Y. Nagasawa, K., Iijima, A. Hein, J.R. and Siever, R., 1982 Hydrogen and oxygen isotopic composition of kaolin minerals in Japan Siliceous Deposits in the Pacific Region Amsterdam Elsevier.Google Scholar
Maurice, A.E. Bakhit, B.R. Basta, F.F. and Khiamy, A.A., 2013 Geochemistry of gabbros and granitoids (M- and I-types) from the Nubian Shield of Egypt: Roots of Neoproterozoic intra-oceanic island arc Precambrian Research 224 397411.CrossRefGoogle Scholar
McDonough, W.F. and Sun, S.S., 1995 Composition of the earth Chemical Geology 120 223253.CrossRefGoogle Scholar
Meunier, A., Meunier, A., 2005 Isotopic composition of clay minerals Clays Berlin-Heidelberg Springer-Verlag.Google Scholar
Miretzky, P. Conzonno, V. and Cirelli, A.F., 2001 Geochemical processes controlling silica concentrations in groundwaters of the Salado River drainage basin, Argentina Journal of Geochemical Exploration 73 155166.CrossRefGoogle Scholar
Montes, C.R. Melfi, A.J. Carvalho, A. Vieira-Coelho, A.C. and Formoso, M.L.L., 2002 Genesis, mineralogy and geochemistry of kaolin deposits of the Jari Rıver, Amapá State, Brazil Clays and Clay Minerals 50 494503.CrossRefGoogle Scholar
MTA (2005) Geothermal resource inventory of Turkey. Series of General Directorate of Mineral Research and Exploration (MTA), No: 201, 739–741, Ankara (in Turkish).Google Scholar
Murray, H.H., 1980 Diagnostic tests for evaluation of kaolin physical properties Acta Mineralogica-Petrographica 24 6780.Google Scholar
Murray, H.H. (1988) Kaolin minerals: Their genesis and occurrences. Pp. 6789 in: Hydrous Phylloslicates (Phylloslicates, Hydrous, editor). Reviews in Mineralogy, 19, Mineralogical Society of America.CrossRefGoogle Scholar
Murray, H.H., 2000 Traditional and new applications for kaolin, smectite, and palygroskite: a general overview Applied Clay Science 17 207221.CrossRefGoogle Scholar
Murray, H.H. and Janssen, J., 1984 Oxygen isotopes — indicators of kaolin genesis Proceedings of the 27th International Geological Congress 15 287303.Google Scholar
Murray, H.H. Keller, W.D., Murray, H.H. Bundy, W. and Harvey, C., 1993 Kaolins, kaolins and kaolins Kaolin Genesis and Utilization Boulder, Colorado, USA The Clay Minerals Society.CrossRefGoogle Scholar
Nakagawa, M. Santosh, M. Yoshikura, S. Miura, M. Fukuda, T. and Harada, A., 2006 Kaolin deposits at Melthonnakkal and Pallipuram within Trivandrum block, southern India Gondwana Research 9 530538.CrossRefGoogle Scholar
Nichols, G., 2009 Terrigenous clastic sediments: gravel, sand and mud Sedimentology and Stratigraphy Chichester, UK. John Wiley and Sons, Ltd..Google Scholar
Nichols, G., 2009 Process of transport and sedimentary structures Sedimentology and Stratigraphy Chichester, UK John Wiley and Sons, Ltd..Google Scholar
Özyurt, N.N. and Bayar., C.S. (2005) Isotope applications in the Aladag karstic aquifer, Taurids, Turkey. Symposium of 2nd Isotope Techniques in National Hydrology, İzmir, Turkey.Google Scholar
Patterson, S.H. Murray, H.H., Lefond, S.J., 1975 Clays Industrial Minerals and Rocks New York AIME.Google Scholar
Pearce, J.A. Harris, N.B. and Tindle, A.G., 1984 Trace element discrimination diagrams for the tectonic interpretation of granitic rocks Journal of Petrology 25 956–83.CrossRefGoogle Scholar
Pevear, D.R. Williams, V.E. and Mustoe, G.E., 1980 Kaolinite, smectite, and K-rectorite in bentonites: Relation to coal rank at Tulameen, British Columbia Clays and Clay Minerals 28 241254.CrossRefGoogle Scholar
Potter, P.E. Maynard, J.B. and Depetris, P.J., 2005 Mud and Mudstones: Introduction and Overview Würzberg, Germany Springer.CrossRefGoogle Scholar
Prasad, M.S. Reid, K.J. and Murray, H.H., 1991 Kaolin: processing, properties and applications Applied Clay Science 6 87119.CrossRefGoogle Scholar
Rodgers, K.A. Browne, P.R.L. Buddle, T.F. Cook, K.L. Greatrex, R.A. Hampton, W.A. Herdianita, N.R. Holland, G.R. Lynne, B.Y. Martin, R. Newton, Z. Pastars, D. Sannazarro, K.L. and Teece, C.I.A., 2004 Silica phases in sinters and residues from geothermal fields of New Zealand Earth-Science Reviews 66 161.CrossRefGoogle Scholar
Ross, C.S. and Hendricks, S.B., 1945 Minerals of the montmorillonite group U.S. Geological Survey Prof. Paper 205 2379.Google Scholar
Saleemi, A.A. and Ahmed, Z., 2000 Mineral and chemical composition of Karak mudstone, Kohat Plateau, Pakistan: implications for smectite-illitization and provenance Sedimentary Geology 130 229247.CrossRefGoogle Scholar
Salvi, S. and Williams-Jones, A.E., 1996 The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada Geochimica et Cosmochimica Acta 60 19171932.CrossRefGoogle Scholar
Salvi, S. Fontan, F. Monchoux, P. Williams-Jones, A.E. and Moine, B., 2000 Hydrothermal mobilization of high field strength elements in alkaline igneous systems: evidence from the Tamazeght Complex (Morocco) Economic Geology 95 559576.Google Scholar
Saunders, A.D. Tarney, J. Marsh, N.G. Wood, D.A., Panayiotou, A., 1980 Ophiolites as ocean crust: a geochemical approach Ophioli tes: Proceedings of the International Ophiolite Symposium, Cyprus, 1979 Cyprus Ministry of Agriculture and Natural Resources, Geological Survey Department.Google Scholar
Savin, S.M. and Epstein, S., 1970 The oxygen and hydrogen isotope geochemistry of clay minerals Geochimica et Cosmochimica Acta 34 2542.CrossRefGoogle Scholar
Savin, S.M. Lee, S., Bailey, S.W., 1988 Isotopic studies of phyllosilicates Hydrous Phyllosilicates (Exclusive of Micas) Washington, D.C. Mineralogical Society of America.Google Scholar
Sayın, S.A., 2007 Origin of kaolin deposits: Evidence from the Hisarcık (Emet-Kütahya) deposits, Western Turkey Turkish Journal of Earth Science 16 7796.Google Scholar
Schroeder, P.A. and Shiflet, J., 2000 Ti-bearing phases in the Huber Formation, an east Georgia kaolin deposit Clays and Clay Minerals 48 151158.CrossRefGoogle Scholar
Senkayi, A.L. Ming, D.W. Dixon, J.B. and Hossner, L.R., 1987 Kaolinite, opal-CT, and clinoptilolite in altered tuffs interbedded with lignite in the Jackson Group, Texas Clays and Clay Minerals 35 281290.CrossRefGoogle Scholar
Seyhan, I., 1978 Türkiye kaolen yatakları ile hidrotermal cevherleşmeler arasında görülen ilişkiler Jeoloji Mühendisliği Dergisi 4 2731.Google Scholar
Sheppard, S.M.F. and Gilg, H.A., 1996 Stable isotope geochemistry of clay minerals Clay Minerals 31 124.CrossRefGoogle Scholar
Sheppard, S.M.F. Nielsen, R.L. and Taylor, H.P., 1969 Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits Economic Geology 64 755777.CrossRefGoogle Scholar
Sheppard, S.M.F. and Gustafson, L.B., 1976 Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits Economic Geology 71 15491559.CrossRefGoogle Scholar
Siddiqui, M.A. and Ahmed, Z., 2008 Geochemistry of the kaolin deposits of Swat (Pakistan) Chemie der Erde 68 207219.CrossRefGoogle Scholar
Sun, S.S. McDonough, W.F., Saunders, A.D. and Norry, M.J., 1989 Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes Magmatism in the Ocean Basins London Geological Society.Google Scholar
Taşdelen, S. (1987) Banaz (Uşak) Hamamboğazı kaplıcalarının jeolojik ve jeofizik etüdü. MSc thesis, Akdeniz University, 95 pp., Turkey (in Turkish).Google Scholar
Taylor, B.E. (1992) Degassing of H2O from rhyolite magma during eruption and shallow intrusion, and the isotopic composition of magmatic water in hydrothermal systems. Pp. 190194 in: Extended Abstracts, Japan-US Symposium on Magmatic Contributions to Hydrothermal Systems (Hedenquist, J.W., editor). Geological Survey of Japan Reports, 279.Google Scholar
Taylor, S.R. and McLennan, S.H., 1985 The Continental Crust: Its Composition and Evolution Oxford Blackwell 312.Google Scholar
Temizel, and Arslan, M., 2009 Mineral chemistry and petrochemistry of post-collisional Tertiary mafic to felsic cogenetic volcanics in the Ulubey (Ordu) Area, Eastern Pontides, NE Turkey Turkish Journal of Earth Sciences 18 2953.Google Scholar
TUIK — Turkey Statistical Institute (2014) Industry Products Annual Production and Selling Statistics, 1 p., Ankara (in Turkish).Google Scholar
Weaver, C.E., Weaver, C.E., 1989 Continental transport and deposition Clays, Muds, and Shales Amsterdam Elsevier.Google Scholar
Whitney, D.L. and Evans, B.W., 2010 Abbreviations for names of rock-forming minerals American Mineralogist 52 16491661.Google Scholar
Williams, L.A. and Crerar, D.A., 1985 Silica Diagenesis, II. General Mechanisms Journal of Sedimentary Petrology 55 312321.Google Scholar
Wilson, M.J., Wilson, M.J., 1987 X-ray powder diffraction methods A Handbook of Determinative Methods in Clay Mineralogy London Chapman & Hall.Google Scholar
Winchester, J.A. and Floyd, P.A., 1977 Geochemical discrimination of different magma series and their differentiation products using immobile elements Chemical Geology 20 325343.CrossRefGoogle Scholar
Yalçın, H. and Gümüşer, G., 2000 Mineralogical and geochemical characteristics of late Cretaceous bentonite deposits of the Kelkit Valley Region, northern Turkey Clay Minerals 35 807825.CrossRefGoogle Scholar
Yıldız, A. Dumlupunar, , 2009 Mineralogy and geochemical affinities of bentonites from Kapıkaya (Eskişehir, W Turkey) Clay Minerals 44 341360.CrossRefGoogle Scholar
Yıldız, A. and Kuşcu, M., 2004 Origin of the Basoren (Kutahya, W Turkey) bentonite deposits Clay Minerals 39 219231.CrossRefGoogle Scholar
Yılmaz, Y. Genç, S.C. Gürer, F. Bozcu, M. Yılmaz, K. Karacık, Z. Altunkaynak, Elmas, A., Bozkurt, E. Winchester, J.A. and Piper, J.D.A., 2000 When did western Anatolian grabens begin to develop? Tectonics and Magmatism in Turkey and the Surrounding Area London Geological Society.Google Scholar
Yılmaz, Y. Genç, C. Karacık, Z. Altunkaynak, , 2001 Two contrasting magmatic associations of northwest Anatolia and their tectonic significance Journal of Geodynamics 31 243271.CrossRefGoogle Scholar
Zielinski, R.A., 1982 The mobility of uranium and other elements during alteration of rhyolite ash to montmorillonite: A case study in the Troublesome Formation, Colorado, U.S.A. Chemical Geology 35 185204.CrossRefGoogle Scholar