Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-22T10:12:09.687Z Has data issue: false hasContentIssue false

The Relationship between the I.R. Spectra of Serpentines and Their Structures

Published online by Cambridge University Press:  01 July 2024

S. Yariv
Affiliation:
Department of Geology, Hebrew University, Jerusalem, Israel
L. Heller-Kallai
Affiliation:
Department of Geology, Hebrew University, Jerusalem, Israel

Abstract

Possible assignments are suggested for some of the absorption bands in the 1150–400 cm−1 region of the i.r. spectra of serpentines. Polarized light was used to identify the out-of-plane vibrations in antigorites and platy lizardites and the vibrations parallel to the fibre axis in chrysotiles and fibrous lizardites. An attempt is made to correlate some known structural characteristics and the chemical composition of the serpentines with some features of the i.r. spectra.

Type
Research Article
Copyright
Copyright © 1975, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aumento, F., (1967) A serpentine mineral showing diverse strain-relief mechanisms Am. Miner. 52 13991413.Google Scholar
Brindley, G. W. Comer, J. J. Uyeda, R. and Zussman, J., (1958) Electron-optical observations with crystals of antigorite Acta Cryst. 11 99102.10.1107/S0365110X5800027XCrossRefGoogle Scholar
Brindley, G. W. and Zussman, J., (1959) Infra-red absorption data for serpentine minerals Am. Miner. 44 185188.Google Scholar
Farmer, V. C., (1958) The infra-red spectra of talc, saponite and hectorite Min. Mag. 31 829845.Google Scholar
Farmer, V. C. and Russell, J. D., (1964) The infra-red spectra of layer silicates Spectrochim. Acta 20 11491173.10.1016/0371-1951(64)80165-XCrossRefGoogle Scholar
Faust, T. G. and Fahey, J. J., (1962) The serpentine-group minerals U.S.G.S. Prof. Paper 384-A 192.Google Scholar
Kunze, G., (1961) Antigorit: Strukturtheoretische Grundlagen und ihre praktische Bedeutung fuer die weitere Serpentin-Forschung Fortschr. Miner. 39 206324.Google Scholar
Luce, R. W., (1971) Identification of serpentine varieties by infra-red absorption U.S.G.S. Prof. Paper 750B 199201.Google Scholar
Page, N. J., (1968) Chemical differences among the serpentine ‘polymorphs’ Am. Miner. 53 201215.Google Scholar
Pampuch, R. and Ptak, W., (1968) Pol. Akad. Nauk, Oddzal Krakowie, Pr. Miner. 15 7.Google Scholar
Pampuch, R. and Ptak, W., (1970) Pol. Akad. Nauk, Oddizal Krakowie Pr. Kom. Ceram., Ceram. 14 736.Google Scholar
Russell, J. D. Farmer, V. C. and Velde, B., (1970) Replacement of OH by OD in layer silicates, and identification of the vibrations of these groups in infra-red spectra Min. Mag. 37 869879.10.1180/minmag.1970.037.292.01CrossRefGoogle Scholar
Stubican, V. and Roy, R., (1961) Isomorphous substitution and infra-red spectra of layer lattice silicates Am. Miner. 46 3251.Google Scholar
Veniale, F. and van der Marel, H. V., (1963) An interstrati-fied saponite-swelling chlorite mineral as a weathering product of lizardite rock from St. Margherita Staffora (Pavia Province), Italy Beitraege zur Mineral, und Petrogr. 9 198245.Google Scholar
Whittaker, E. S. W., (1956) The structure of chrysotile—II: Clinochrysotile Acta Cryst. 9 855862.10.1107/S0365110X5600245XCrossRefGoogle Scholar
Whittaker, E. J. W. and Zussman, J., (1956) The characterization of serpentine minerals by X-ray diffraction Min. Mag. 31 107126.Google Scholar
Whittaker, E. J. W. and Wicks, F. J., (1970) Chemical differences among the serpentine ‘polymorphs’: A discussion Am. Miner. 55 10251047.Google Scholar