Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-01T07:09:53.729Z Has data issue: false hasContentIssue false

Rare-Earth Minerals in Kaolin Ore, Mine Tailings, and Sands – Central Georgia, Upper Coastal Plain

Published online by Cambridge University Press:  01 January 2024

Anthony Boxleiter*
Affiliation:
Department of Geosciences, Georgia State University, Atlanta, GA 30302-3965, USA
W. Crawford Elliott
Affiliation:
Department of Geosciences, Georgia State University, Atlanta, GA 30302-3965, USA

Abstract

The total concentrations of rare-earth elements (REE) in the mined kaolin (0.02–0.06 wt.%), kaolin mine tailings (0.03–1.9 wt.%), and the kaolin-associated Marion Member sand lithology (0.03–4.6 wt.%) opened questions regarding the modes of occurrence of the REE and the role(s) of chemical weathering and secondary processes to explain the presence of REE in these materials. The REE were hosted primarily by phosphate minerals (monazite, xenotime) based on mineralogic analyses (scanning electron microscopy, X-ray diffraction). Enrichments in the light rare-earth elements (LREE: La–Gd) and the high correlation coefficient values were noted between P and the total REE concentrations (r2 = 0.99) for the sands and the mine tailings. Lower correlation coefficient values were noted between total REE concentrations and Zr (r2 = 0.31). The coarse fractions of the mined kaolins were enriched in the heavy rare-earth elements (HREE: Y, Tb–Lu) relative to the kaolin-associated sand lithologies. The REE inventory cannot be explained solely by mineral inheritance within the mined kaolins. Lower correlation coefficient values between P and total REE, positive Eu/Eu* anomalies, and the presence of xenotime overgrowths on zircon showed the importance of the role of chemical weathering of the detrital minerals during post-depositional processes (such as diagenesis) leading to redistributed and fractionated REE within the mined kaolin. The possibility of adsorption of the REE to kaolin mineral surfaces in the fine fraction of the mined kaolins remains open and permits further study to characterize fully the multi-modal fractionation of REE possible in the Georgia kaolin deposits.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

African Mineral Standards (2008). Certificate of Certified Reference Material AMIS0129 (Vanadium bearing Titaniferous Iron Ore Standard; Rooiwater Complex, South Africa). Isando, South Africa, 5.Google Scholar
Bailey, M.P. (2021). US-European rare earth production initiative launched: Chemical Engineering News. March 8, 2021. https://www.chemengonline.com/u-s-european-rare-earth-production-initiative-launched/. Accessed: November 10, 2022.Google Scholar
Bao, Z.Zhao, Z.Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China Ore Geology Reviews 2008 33 351953510.1016/j.oregeorev.2007.03.005CrossRefGoogle Scholar
Bern, C. R.Shah, A. K.Benzel, W. M.Lowers, H. A.The distribution and composition of REE-bearing minerals in placers of the Atlantic and Gulf coastal plains, USA Journal of Geochemical Exploration 2016 162 506110.1016/j.gexplo.2015.12.011CrossRefGoogle Scholar
Bern, C. R.Yesavage, T.Foley, N. K.Ion-adsorption REE in regolith of the Liberty Hill pluton, South Carolina, USA: An effect of hydrothermal alteration Journal of Geochemical Exploration 2017 172 294010.1016/j.gexplo.2016.09.009CrossRefGoogle Scholar
Berti, D.Slowey, N. C.Yancey, T. E.Deng, Y.Rare earth nanominerals in bentonite deposits of the Eocene Texas coastal plains Applied Clay Science 2022 216 10637310.1016/j.clay.2021.106373CrossRefGoogle Scholar
Bowman, W. S.Canadian diorite gneiss SY-4: Preparation and certification by eighty-nine laboratories Geostandards Newsletter 1995 19 10112410.1111/j.1751-908X.1995.tb00156.xCrossRefGoogle Scholar
Buie, B. F.The Huber Formation of eastern central Georgia in short contributions to the geology of Georgia: Georgia Geologic Survey Bulletin 1978 93 17Google Scholar
Buie, B. F., & Fountain, R. C. (1967). Tertiary and Cretaceous age of kaolin deposits in Georgia and South Carolina in: Abstracts of 1967. Geological Society of America, 15, 465. https://eurekamag.com/research/020/214/020214240.php. Accessed 9 Oct 2021.Google Scholar
Buie, B. F., & Schrader, E. L. (1982). South Carolina Kaolin in Nystrom, P.G., Jr., and Willoughby, R.H., eds.. Geological investigations related to the stratigraphy in the kaolin mining district, Aiken County, South Carolina (Carolina Geological Society Field Trip Guidebook for 1982): Columbia, S.C., South Carolina Geological Survey, 1–20.Google Scholar
Buie, B. F.Hetrick, J. H.Patterson, S. H.Neeley, C. L.Geology and industrial mineral resources of the Macon-Gordon Kaolin District Georgia. US Geological Survey 1979 79–526 3610.3133/ofr79526Google Scholar
Bunzli, J.-C. (2013). Lanthanides in Kirk-Othmer Encyclopedia of Chemical Technology, (Ed.). John Wiley & Sons, Ltd. https://doi.org/10.1002/0471238961.1201142019010215.a01.pub3CrossRefGoogle Scholar
Burt, D. M. (1989). Compositional and phase relations among rare-earth element minerals. In: Lipin, B.R., McKay, G.A. (Eds.), Geochemistry and Mineralogy of Rare Earth Elements. 21, 259–308. https://doi.org/10.1515/9781501509032-013CrossRefGoogle Scholar
Canadian Certified Reference Materials Project (CCRMP)(2014). Certified Reference Material (CRM) for Rare Earth Elements, Zirconium and Niobium (“REE-1”). National Resources, Canada. 6.Google Scholar
Central Geological Laboratory of Mongolia (2016a). Rare-earth Ore (“TRM-2”, code no. CGL111) Certified Reference Material (CRM). CGL: Ulaanbaatar, Mongolia, 5.Google Scholar
Central Geological Laboratory of Mongolia (2016b). Rare-earth Ore (“TRLK”, code no. CGL124) Certified Reference Material (CRM). CGL: Ulaanbaatar, Mongolia, 6.Google Scholar
Chakhmouradian, A. R.Wall, F.Rare Earth Elements: Minerals, Mines, Magnets (and More) Elements 2012 8 533334010.2113/gselements.8.5.333CrossRefGoogle Scholar
Cheshire, M. (2011). Isotopic and geochemical composition of the Georgia kaolins: insights into formation and diagenetic conditions. Indiana University.Google Scholar
Cheshire, M., Bish, D., Cahill, J., Kertesz, V., & Stack, A. (2018). Geochemical evidence for rare-earth element mobilization during kaolin diagenesis. ACS Earth and Space Chemistry, 2. https://doi.org/10.1021/acsearthspacechem.7b00124CrossRefGoogle Scholar
China National Analysis Center for Iron and Steel (2006). Certificate of Certified Reference Material NCS DC 19003a (“Coulsonite”). China National Accreditation of Geostandards, 3.Google Scholar
China National Analysis Center for Iron and Steel (2010). Certificate of Certified Reference Material NCS DC 71305 (GBW 07113). Beijing, China, 2.Google Scholar
China National Analysis Center for Iron and Steel (2008a). Certificate of Certified Reference Material NCS DC 86317 and NCS DC 86318 (“Rare Earth Ore”). China National Accreditation of Geostandards, 3.Google Scholar
China National Analysis Center for Iron and Steel (2008b). Certificate of Certified Reference Material NCS DC 86316 (“Zirconium Ore”). China National Accreditation of Geostandards, 3.Google Scholar
Condie, K. C. (1991). Another look at rare earth elements in shales. Geochimica et Cosmochimica Acta, 55(9), 2527–2531. https://doi.org/10.1016/0016-7037(91)90370-KCrossRefGoogle Scholar
Connelly, N. G., Damhus, T., Hartshorn, R. M., & Hutton, A. T. (Eds.). (2005). Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005: the Royal Society of Chemistry.Google Scholar
Dombrowski, T. (1992). The use of trace elements to determine provenance relations among different types of Georgia kaolins. Indiana University.Google Scholar
Dombrowski, T. (1993). Theories of origin for the Georgia kaolins: A Review in H. H. Murray, W. M. Bundy, & C. C. Harvey (Eds.), Kaolin genesis and utilization (Vol. 1). Clay Minerals Society. https://doi.org/10.1346/CMS-SP-1.4CrossRefGoogle Scholar
Elliott, W. C.Gardner, D. J.Malla, P.Riley, E. D.A new look at the occurrences of the rare-earth elements in the Georgia kaolins Clays and Clay Minerals 2018 66 24526010.1346/CCMN.2018.064096CrossRefGoogle Scholar
Elzea-Kogel, J., Pickering, S. M., Shelobolina, E., Chowns, T., Yuan, J., & Avant, D. M. (2002). The Georgia kaolins: geology and utilization. Society for Mining, Metallurgy and Exploration. https://books.google.com/books?id=3ODIoQEACAAJ. Accessed 27 Dec 2020.Google Scholar
Falls, W. F.Powell, D. C.Stratigraphy and depositional environments of sediments from five cores from Screven and Burke Counties Georgia. US Geological Survey 2001 1603A 2010.3133/pp1603AGoogle Scholar
Flanagan, F. J.Three USGS Mafic Rock Reference Samples, W-2, DNC-1, and BIR-1 US Geological Survey Bulletin 1984 1623 54Google Scholar
Flanagan, J. F.Gottfried, D.USGS Rock standards III; Manganese nodule reference samples USGS Nod A-1, USGS Nod P-1 US Geological Survey 1980 1155 39Google Scholar
Fortier, S. M., Nassar, N. T., Lederer, G. W., Brainard, J., Gambogi, J., & McCullough, E. A. (2018). Draft critical mineral list—Summary of methodology and background information—U.S. Geological Survey technical input document in response to Secretarial Order No. 3359. US Geological Survey, 2018–1021. 26. https://doi.org/10.3133/ofr20181021CrossRefGoogle Scholar
Ghosal, S., Agrahari, S., Banerjee, S., Chakrabarti, R., & Sengupta, D. (2020). Geochemistry of the heavy mineral sands from the Garampeta to the Markandi beach, southern coast of Odisha, India: Implications of high contents of REE and radioelements attributed to placer monazite. Journal of Earth System Science, 129. https://doi.org/10.1007/s12040-020-01419-8CrossRefGoogle Scholar
Gladney, E. S.Roelandts, I.1987 Compilation of Elemental Concentration Data for USGS BIR-1, DNC-1, and W-2 Geostandards Newsletter 1988 12 6311810.1111/j.1751-908X.1988.tb00044.xCrossRefGoogle Scholar
Govindaraju, K.1994 Compilation of Working Values and Descriptions for 383 Geostandards Geostandards Newsletter 1994 18 115810.1111/j.1751-908X.1994.tb00502.xCrossRefGoogle Scholar
Govindaraju, K.Rubeska, I.Paukert, T.1994 Report on Zinnwaldite ZW-6 Analyzed by Ninety-Two GIT-IWG Member-Laboratories Geostandards Newsletter 1994 18 114210.1111/j.1751-908X.1994.tb00502.xCrossRefGoogle Scholar
Gromet, L. P.Haskin, L. A.Korotev, R. L.Dymek, R. F.The “North American shale composite”: Its compilation, major and trace element characteristics Geochimica Et Cosmochimica Acta 1984 48 122469248210.1016/0016-7037(84)90298-9CrossRefGoogle Scholar
Hack, J. T. (1982). Physiographic divisions and differential uplift in the Piedmont and Blue Ridge. US Geological Survey 1265, 49. https://doi.org/10.3133/pp1265CrossRefGoogle Scholar
Hein, J. R.Mizell, K.Koschinsky, A.Conrad, T. A.Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources Ore Geology Reviews 2013 51 11410.1016/j.oregeorev.2012.12.001CrossRefGoogle Scholar
Hinckley, D. N.Mineralogical and chemical variations in the kaolin deposits of the coastal plain of Georgia and South Carolina American Mineralogist 1965 50 11–1218651883Google Scholar
Hoskin, PWOSchaltegger, U.The composition of zircon and igneous and metamorphic petrogenesis Reviews in Mineralogy and Geochemistry 2003 53 1276210.2113/0530027CrossRefGoogle Scholar
Huddlestun, P.F. (1981). Correlation chart; Georgia coastal plain: Georgia Geological Survey, 82–1Google Scholar
Huddlestun, P.P. (1982). The development of the stratigraphic terminology of the Claibornian and Jacksonian marine deposits of western South Carolina and eastern Georgia, in Nystrom, P.G., Jr., and Willoughby, R.H., eds.. Geological investigations related to the stratigraphy in the kaolin mining district, Aiken County, South Carolina (Carolina Geological Society Field Trip Guidebook for 1982): Columbia, S.C., South Carolina Geological Survey, 21–33.Google Scholar
Huddlestun, P.F., and Hetrick, J.H. (1991). The stratigraphic framework of the Fort Valley plateau and the central Georgia kaolin district: Georgia Geological Society Guidebook, 26th Annual Field Trip, October, 1991, (11)1, 119.Google Scholar
Huddlestun, P. F.Summerour, J. H.The Lithostratigraphic Framework of the Uppermost Cretaceous and Lower Tertiary of Eastern Burke County Georgia. Georgia Geological Survey Bulletin 1996 127 94Google Scholar
Hurst, V. J.Pickering, S. M.Origin and classification of coastal plain kaolins, Southeastern USA, and the role of groundwater and microbial action Clays and Clay Minerals 1997 45 227428510.1346/CCMN.1997.0450215CrossRefGoogle Scholar
Kadir, S., Külah, T., Erkoyun, H., Uyanık, N. Ö., Eren, M., & Elliott, W. C. (2021). Mineralogy, geochemistry, and genesis of bentonites in upper Cretaceous pyroclastics of the Bereketli Member of the Reşadiye Formation, Reşadiye (Tokat), Turkey. Applied Clay Science, 204, 106024. https://doi.org/10.1016/j.clay.2021.106024CrossRefGoogle Scholar
La Moreaux, Phillip E. (1946). Geology and Ground-water Resources of the Coastal Plain of East-Central Georgia. US Geological Survey. 187.Google Scholar
Li, MYHZhou, M-FThe role of clay minerals in forming the regolith-hosted heavy rare earth element deposits American Mineralogist 2020 105 9210810.2138/am-2020-7061CrossRefGoogle Scholar
Li, MYHZhou, M-FWilliams-Jones, A. E.Controls on the dynamics of rare earth elements during subtropical hillslope processes and formation of regolith-hosted deposits Economic Geology 2020 115 51097111810.5382/econgeo.4727CrossRefGoogle Scholar
Li, YHMZhao, W. W.Zhou, M-FNature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: An integrated genetic model Journal of Asian Earth Sciences 2017 148 659510.1016/j.jseaes.2017.08.004CrossRefGoogle Scholar
Liu, P.Huang, R.Tang, Y.Comprehensive understandings of rare earth element (REE) speciation in coal fly ashes and implication for REE extractability Environmental Science & Technology 2019 53 95369537710.1021/acs.est.9b00005CrossRefGoogle ScholarPubMed
McLennan, S. M.Ross Taylor, S.Geology, geochemistry and natural abundances in Encyclopedia of Inorganic and Bioinorganic Chemistry American Cancer Society 2012 10.1002/9781119951438.eibc2004Google Scholar
Mertie, J. B.Monazite deposits of the southeastern Atlantic states US Geological Survey 1953 237 3110.3133/cir237Google Scholar
Mertie, J. (1975). Monazite placers in the southeastern Atlantic states. US Geological Survey Bulletin, 1390, 41. https://pubs.usgs.gov/bul/1390/report.pdfGoogle Scholar
Miller, J. A.Hydrogeologic framework of the Floridan aquifer system in Florida and in parts of Georgia, South Carolina, and Alabama US Geological Survey 1986 1403B 9110.3133/pp1403BGoogle Scholar
Mioduski, T.Covalency of Sc(III), Y(III), Ln(III) and An(III) as manifested in the enthalpies of solution of anhydrous rare earth halides Journal of Radioanalytical and Nuclear Chemistry 1993 176 537138210.1007/bf02163384CrossRefGoogle Scholar
Morton, A. C., & Hallsworth, C. (2007). Chapter 7 Stability of detrital heavy minerals during burial diagenesis. Developments in Sedimentology. 58, 215–245. https://doi.org/10.1016/S0070-4571(07)58007-6CrossRefGoogle Scholar
Murray, H. (1976). The Georgia sedimentary kaolins. The 7th Symposium on Genesis of Kaolin, 114–125.Google Scholar
Murray, H. (2007). Applied clay mineralogy: Occurrences, processing, and application of kaolins, bentonites, palygorskite-sepiolite, and common clays. Elsevier.Google Scholar
Murray, H.H. and Keller, W.D. (1993). Kaolins, Kaolins and Kaolins. Special Publication No. 1, Clay Minerals Society (Boulder, CO), 1–24.CrossRefGoogle Scholar
Nystrom, P. G., Jr., & Willoughby, R. H. (1982). Cretaceous, Tertiary, and Pleistocene Stratigraphy of Hollow Creek and Graniteville Quadrangles, Aiken County, South Carolina in Nystrom, P.G., Jr., and Willoughby, R.H., eds.. Geological investigations related to the stratigraphy in the kaolin mining district, Aiken County, South Carolina (Carolina Geological Society Field Trip Guidebook for 1982): Columbia, S.C., South Carolina Geological Survey, 47–65.Google Scholar
Nystrom, P.G., Jr., Willoughby, R.H., and Price, L.K. (1991). Cretaceous and Tertiary stratigraphy of the upper coastal plain, South Carolina, IN Horton, J.W., Jr., and Zullo, V.A., eds., The geology of the Carolinas: Carolina Geological Society, 50th Anniversary Volume, 221–240.Google Scholar
Oladeni, I. (2022). Rare-earth element occurrences in heavy mineral sand, southeast Georgia. Georgia State University. https://doi.org/10.57709/28900383CrossRefGoogle Scholar
Oladeni, I., Elliott, W. C., & Renner, J. (2021). Rare earth elements occurrence in heavy mineral sands in southeast Georgia. GSA Connects 2021. Portland, Oregon. https://doi.org/10.1130/abs/2021AM-369353CrossRefGoogle Scholar
Ore Research and Exploration Pty Ltd. (2016). Uranium-bearing Certified Reference Material. OREAS 101b: COA-0719-OREAS101b-R3, 42.Google Scholar
Owens, J. P.Gohn, G. S.Poag, C. W.Depositional history of the Cretaceous series in the U.S. Atlantic coastal plain: Stratigraphy, paleoenvironments, and tectonic controls of sedimentationGeologic evolution of the United States Atlantic margin 1985 Van Nostrand Reinhold Co. 2585Google Scholar
Pak, S. J.Seo, I.Lee, K-YHyeong, K.Rare earth elements and other critical metals in deep seabed mineral deposits: Composition and implications for resource potential Minerals 2018 9 310.3390/min9010003CrossRefGoogle Scholar
Patterson, S. H.Murray, H. H.Kaolin, refractory clay, ball clay, and halloysite in North America, Hawaii, and the Caribbean region US Geological Survey 1984 1306 5610.3133/pp1306Google Scholar
Pavich, M. J.Regolith residence time and the concept of surface age of the Piedmont “Peneplain” Geomorphology 1989 2 18119610.1016/0169-555X(89)90011-1CrossRefGoogle Scholar
Pettijohn, F. J.Sedimentary rocks Harper and Brothers, New York. 1957 10.1017/S0016756800070254Google Scholar
Pickering, S. M., & Hurst, V. J. (1989). Commercial kaolins in Georgia, occurrence, mineralogy, origin, and use in: Fritz WJ, Editor. Excursions in Georgia Geology. Atlanta, Georgia: Geol Soc Am Guidebooks, 9(1), 29–75.Google Scholar
Piper, D. Z.Rare earth elements in the sedimentary cycle: A summary Chemical Geology 1974 14 428530410.1016/0009-2541(74)90066-7CrossRefGoogle Scholar
Poag C. W., and Schlee J.S. (1984). Depositional sequences and stratigraphic gaps on submerged United States Atlantic margin: Interregional unconformities and hydrocarbon accumulation, J.S. Schlee, ed., American Association of Petroleum Geologists, Memoir 36.Google Scholar
Pruett, R. J.Kaolin deposits and their uses: Northern Brazil and Georgia, USA Applied Clay Science 2016 131 31310.1016/j.clay.2016.01.048CrossRefGoogle Scholar
Ragland, P. C.Rogers, JJWJustus, P. S.Origin and differentiation of Triassic dolerite magmas, North Carolina, USA Contributions to Mineralogy and Petrology 1968 20 1578010.1007/BF00371066CrossRefGoogle Scholar
Rasmussen, B.Early-diagenetic REE-phosphate minerals (florencite, gorceixite, crandallite, and xenotime) in marine sandstones; a major sink for oceanic phosphorus American Journal of Science 1996 296 60163210.2475/ajs.296.6.601CrossRefGoogle Scholar
Rasmussen, B. (2000). The impact of early-diagenetlc aluminophosphate precipitation on the oceanic phosphorus budget in marine authigenesis: From global to microbial. SEPM Society for Sedimentary Geology, 66. https://doi.org/10.2110/pec.00.66.0089CrossRefGoogle Scholar
Rasmussen, B.Radiometric dating of sedimentary rocks: The application of diagenetic xenotime geochronology Earth-Science Reviews 2005 68 319724310.1016/j.earscirev.2004.05.004CrossRefGoogle Scholar
Reinhart, J. (1979). Lithofacies and Depositional cycles in Upper Cretaceous rocks, Central Georgia to Eastern Alabama: in Proceedings, 2nd Symposium on the Geology of the Southeastern Coastal Plain: Georgia Geological Survey Information Circular 53, 89–96.Google Scholar
Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust in H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry. Pergamon, 3, 1–64. https://doi.org/10.1016/B0-08-043751-6/03016-4CrossRefGoogle Scholar
Sanematsu, K., & Watanabe, Y. (2016). Characteristics and genesis of ion adsorption-type rare earth element deposits. in P. L. Verplanck & M. W. Hitzman (Eds.), Rare Earth and Critical Elements in Ore Deposits. Society of Economic Geologists, 18, 55–79. https://doi.org/10.5382/Rev.18.03CrossRefGoogle Scholar
Teitler, Y.Cathelineau, M.Ulrich, M.Ambrosi, J. P.Munoz, M.Sevin, B.Petrology and geochemistry of scandium in New Caledonian Ni-Co laterites Journal of Geochemical Exploration 2019 196 13115510.1016/j.gexplo.2018.10.009CrossRefGoogle Scholar
Tepe, N.Bau, M.Behavior of rare earth elements and yttrium during simulation of arctic estuarine mixing between glacial-fed river waters and seawater and the impact of inorganic (nano-)particles Chemical Geology 2016 438 13414510.1016/j.chemgeo.2016.06.001CrossRefGoogle Scholar
Verplanck, P. L., Van Gosen, B. S., Seal II, R. R., & McCafferty, A. E. (2014). A deposit model for carbonatite and peralkaline intrusion-related rare earth element deposits: Chapter J in Mineral deposit models for resource assessment. US Geological Survey, 2010–5070J, 72. https://doi.org/10.3133/sir20105070JCrossRefGoogle Scholar
Whitney, D.Evans, B.Abbreviations for names of rock-forming minerals American Mineralogist 2010 95 18518710.2138/am.2010.3371CrossRefGoogle Scholar
Wilson, M. J. (2013). Rock-forming Minerals, Vol. 3c, Sheet Silicates-Clay Minerals, 2nd edition. Geological Society of London.Google Scholar
Yan, P.Zhang, G.Yang, Y.Mclean, A.Characterization and pre-concentration of scandium in low-grade magnetite ore Journal of the Minerals, Metals & Materials Society 2019 71 4666467310.1007/s11837-019-03541-5CrossRefGoogle Scholar
Yasukawa, K.Ohta, J.Mimura, K.Tanaka, E.Takaya, Y.Usui, Y.Fujinaga, K.Machida, S.Nozaki, T.Iijima, K.Nakamura, K.Kato, Y.A new and prospective resource for scandium: Evidence from the geochemistry of deep-sea sediment in the western North Pacific Ocean Ore Geology Reviews 2018 102 26026710.1016/j.oregeorev.2018.09.001CrossRefGoogle Scholar
Yusoff, Z. M.Ngwenya, B. T.Parsons, I.Mobility and fractionation of REE during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia Chemical Geology 2013 349–350 718610.1016/j.chemgeo.2013.04.016CrossRefGoogle Scholar
Zhang, Z., Chi, R., Chen, Z., & Chen, W. (2020). Effects of ion characteristics on the leaching of weathered crust elution-deposited rare earth ore. Frontiers in Chemistry, 8, 605968. https://doi.org/10.3389/fchem.2020.605968CrossRefGoogle Scholar
Zielinski, R. A. (1982). The mobility of uranium and other elements during alteration of rhyolite ash to montmorillonite: A case study in the Troublesome Formation, Colorado, U.S.A. Chemical Geology, 35(3), 185–204. https://doi.org/10.1016/0009-2541(82)90001-8CrossRefGoogle Scholar
Supplementary material: File

Boxleiter and Elliott supplementary material
Download undefined(File)
File 21.8 MB