Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T13:34:51.170Z Has data issue: false hasContentIssue false

Preparation of Large Platy Particles of Co-Al Layered Double Hydroxides

Published online by Cambridge University Press:  01 January 2024

Mihoko Kayano
Affiliation:
Graduate School of Science and Engineering, Waseda University, Nishiwaseda 1-6-1, Shinjuku-ku, Tokyo 169-8050, Japan
Makoto Ogawa*
Affiliation:
Graduate School of Science and Engineering, Waseda University, Nishiwaseda 1-6-1, Shinjuku-ku, Tokyo 169-8050, Japan Department of Earth Sciences, Waseda University, Nishiwaseda 1-6-1, Shinjuku-ku, Tokyo 169-8050, Japan
*
*E-mail address of corresponding author: makoto@waseda.jp

Abstract

Cobalt (II) and Al (III) layered double hydroxides were precipitated from homogeneous solutions using urea hydrolysis under hydrothermal conditions. The particle sizes were controlled successfully by changing the reaction temperature and period. It was found that larger particles formed by reactions at lower temperatures over longer reaction periods because the slow urea hydrolysis at lower temperatures suppresses the formation of nuclei in the solution. When the reaction was conducted at 60°C for 100 days, particles >40 µm wide were obtained.

Type
Research Article
Copyright
Copyright © 2006, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alejandre, A. Medina, F. Salagre, P. Correig, X. and Sueiras, J.E., (1999) Preparation and study of Cu-Al mixed oxides via hydrotalcite-like precursors Chemistry of Materials 11 939948 10.1021/cm980500f.CrossRefGoogle Scholar
Cai, H. Hiller, A.C. Franklin, K.R. Nunn, C.C. and Ward, M.D., (1994) Nanoscale imaging of molecular adsorption Science 266 15511555 10.1126/science.266.5190.1551.CrossRefGoogle ScholarPubMed
Cavani, F. Trifirò, F. and Vaccari, A., (1991) Hydrotalcite-type anionic clays: preparation, properties and applications Catalysis Today 11 173301 10.1016/0920-5861(91)80068-K.CrossRefGoogle Scholar
Choy, J.H. Kwak, S.Y. Park, S.J. Jeong, Y.J. and Portier, J., (1999) Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide Journal of the American Chemical Society 121 13991400 10.1021/ja981823f.CrossRefGoogle Scholar
Choy, J.H. Kwak, S.Y. Park, S.J. Jeong, Y.J. and Portier, J., (2000) Inorganic layered double hydroxides as nonviral vectors Angewandte Chemie International Edition 39 40424045.Google ScholarPubMed
Climent, M.J. Corma, A. Iborra, S. Epping, K. and Velty, A., (2004) Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures Journal of Catalysis 225 316326 10.1016/j.jcat.2004.04.027.CrossRefGoogle Scholar
Costantino, Umberto Marmottini, Fabio Nocchetti, Morena and Vivani, Riccardo, (1998) New Synthetic Routes to Hydrotalcite-Like Compounds − Characterisation and Properties of the Obtained Materials European Journal of Inorganic Chemistry 1998 10 14391446 10.1002/(SICI)1099-0682(199810)1998:10<1439::AID-EJIC1439>3.0.CO;2-1.3.0.CO;2-1>CrossRefGoogle Scholar
Costantino, U. Coletti, N. and Nocchetti, M., (1999) Anion exchange of methyl orange into Zn-Al synthetic hydrotalcite and photophysical characterization of the intercalates obtained Langmuir 15 44544460 10.1021/la981672u.CrossRefGoogle Scholar
Del Arco, M. Malet, P. Trujillano, R. and Rives, V., (1999) Synthesis and characterization of hydrotalcites containing Ni(II) and Fe(III) and their calcination products Chemistry of Materials 11 624633 10.1021/cm9804923.CrossRefGoogle Scholar
Del Arco, M. Cebadera, E. Gutierrez, S. Martin, C. Montero, M.J. Rives, V. Rocha, J. and Sevilla, M.A., (2004) Mg,Al Layered double hydroxides with intercalated indomethacin: Synthesis, characterization, and pharmacological study Journal of Pharmaceutical Sciences 93 16491658 10.1002/jps.20054.CrossRefGoogle ScholarPubMed
Fetter, G. Hernandez, F. Maubert, A.M. Lara, V.H. and Bosch, P., (1997) Microwave irradiation effect on hydrotalcite synthesis Journal of Porous Materials 4 2730 10.1023/A:1009619005529.CrossRefGoogle Scholar
He, J. Li, B. Evans, D.G. and Duan, X., (2004) Synthesis of layered double hydroxides in an emulsion solution Colloids and Surfaces A; Physicochemical and Engineering Aspects 251 191196 10.1016/j.colsurfa.2004.09.032.CrossRefGoogle Scholar
Hernandez-Moreno, M.J. Ulibarri, M.A. Rendon, J.L. and Serna, C.J., (1985) Physics and Chemistry of Minerals 12 3438.CrossRefGoogle Scholar
Hibino, T. and Tsunashima, A., (1998) Characterization of repeatedly reconstructed Mg-Al hydrotalcite-like compounds: gradual segregation of aluminum from the structure Chemistry of Materials 10 40554061 10.1021/cm980478q.CrossRefGoogle Scholar
Kaneda, K. Yamashita, T. Matsushita, T. and Ebitani, K., (1998) Heterogeneous oxidation of allylic and benzylic alcohols catalyzed by Ru-Al-Mg hydrotalcites in the presence of molecular oxygen Journal of Organic Chemistry 63 17501751 10.1021/jo971965c.CrossRefGoogle Scholar
Kannan, S. and Swamy, C.S., (1992) Synthesis and physicochemical characterization of cobalt aluminium hydrotalcite Journal of Materials Science Letters 11 15851587 10.1007/BF00740840.CrossRefGoogle Scholar
Kannan, S. and Swamy, C.S., (1999) Catalytic decomposition of nitrous oxide over calcined cobalt aluminum hydrotalcites Catalysis Today 53 725737 10.1016/S0920-5861(99)00159-5.CrossRefGoogle Scholar
Kannan, S. Velu, S. Ramkumar, V. and Swamy, C.S., (1995) Synthesis and physicochemical properties of cobalt aluminium hydrotalcites Journal of Materials Science 30 14621468 10.1007/BF00375249.CrossRefGoogle Scholar
Kloprogge, J.T. and Frost, R.L., (1999) Fourier transform and Raman spectroscopic study of the local structure of Mg-, Ni-, and Co-hydrotalcites Journal of Solid State Chemistry 146 506515 10.1006/jssc.1999.8413.CrossRefGoogle Scholar
Leroux, F. and Besse, J.-P., (2001) Polymer interleaved layered double hydroxide: a new emerging class of nanocomposites Chemistry of Materials 13 35073515 10.1021/cm0110268.CrossRefGoogle Scholar
Leroux, F. Moujahid, E.M. Taviot-Gue’ho, C. and Besse, J.-P., (2001) Effect of layer charge modification for Co-Al layered double hydroxides: study by X-ray absorption spectroscopy Solid State Sciences 3 8192 10.1016/S1293-2558(00)01119-5.CrossRefGoogle Scholar
Li, F. Yang, Q. Evans, D.G. and Duan, X., (2005) Synthesis of magnetic nanocomposite MgO/MgFe2O4 from Mg-Fe layered double hydroxides precursors Journal of Materials Science 40 19171922 10.1007/s10853-005-1211-9.CrossRefGoogle Scholar
Miyata, S., (1975) The syntheses of hydrotalcite-like compounds and their structures and physico-chemical properties — I: The systems Mg2+-Al3+-NO3, Mg2+-Al3+-Cl, Mg2+-Al3+-ClO4,Ni2+-Al3+-Cl and Zn2+-Al3+-Cl Clays and Clay Minerals 23 369375 10.1346/CCMN.1975.0230508.CrossRefGoogle Scholar
Miyata, S., (1983) Anion-exchange properties of hydrotalcite-like compounds Clays and Clay Minerals 31 305311 10.1346/CCMN.1983.0310409.CrossRefGoogle Scholar
Nakayama, H. Wada, N. and Tsuhako, M., (2004) Intercalation of amino acids and peptides into Mg-Al layered double hydroxide by reconstruction method International Journal of Pharmaceutics 269 469478 10.1016/j.ijpharm.2003.09.043.CrossRefGoogle ScholarPubMed
Narayanan, S. and Krishna, K., (1996) Highly active hydrotalcite supported palladium catalyst for selective synthesis of cyclohexanone Applied Catalysis A: General 147 L253L258 10.1016/S0926-860X(96)00298-0.CrossRefGoogle Scholar
Ogawa, M. and Kaiho, H., (2002) Homogeneous precipitation of uniform hydrotalcite particles Langmuir 18 42404242 10.1021/la0117045.CrossRefGoogle Scholar
Oriakhi, C.O. Farr, I.V. and Lerner, M.M., (1996) Incorporation of poly(acrylic acid), poly(vinylsulfonate) and poly(styrene sulfonate) within layered double hydroxides Journal of Materials Chemistry 6 103107 10.1039/jm9960600103.CrossRefGoogle Scholar
Pavan, P.C. Gomes, G. and Valim, J.B., (1998) Adsorption of sodium dodecyl sulfate on layered double hydroxides Microporous and Mesoporous Materials 21 659665 10.1016/S1387-1811(98)00054-7.CrossRefGoogle Scholar
Pérez-Ramírez, J. Overeijnder, J. Kapteijn, F. and Moulijn, J.A., (1999) Structural promotion and stabilizing effect of Mg in the catalytic decomposition of nitrous oxide over calcined hydrotalcite-like compounds Applied Catalysis B: Environmental 23 5972 10.1016/S0926-3373(99)00066-1.CrossRefGoogle Scholar
Pérez-Ramírez, J. Mul, G. Kapteijn, F. and Moulijn, J.A., (2001) In situ investigation of the thermal decomposition of Co-Al hydrotalcite in different atmospheres Journal of Materials Chemistry 11 821830 10.1039/b009320n.CrossRefGoogle Scholar
Pérez-Ramírez, J. Mul, G. Kapteijn, F. and Moulijn, J.A., (2001) On the stability of the thermally decomposed Co-Al hydrotalcite against retrotopotactic transformation Materials Research Bulletin 36 17671775 10.1016/S0025-5408(01)00657-2.CrossRefGoogle Scholar
Pérez-Ramírez, J. Ribera, A. Kapteijn, F. Coronado, E. and Gómez-García, C.J., (2002) Magnetic properties of Co-Al, Ni-Al, and Mg-Al hydrotalcites and the oxides formed upon their thermal decomposition Journal of Materials Chemistry 12 23702375 10.1039/B110314H.CrossRefGoogle Scholar
Rives, V. and Ulibarri, M.A., (1999) Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates Coordination Chemistry Reviews 181 61120 10.1016/S0010-8545(98)00216-1.CrossRefGoogle Scholar
Shaw, W.H.R. and Bordeaux, J.J., (1955) The decomposition of urea in aqueous media Journal of the American Chemical Society 77 47294733 10.1021/ja01623a011.CrossRefGoogle Scholar
Takagi, K. Shichi, T. Usami, H. and Sawaki, Y., (1993) Controlled photocycloaddition of unsaturated carboxylates intercalated in hydrotalcite clay interlayers Journal of the American Chemical Society 115 4339–4334 10.1021/ja00063a060.CrossRefGoogle Scholar
Thompson, H.A. Parks, G.A. and Brown, G.E., (1999) Ambient-temperature synthesis, evolution, and characterization of cobalt-aluminum hydrotalcite-like solids Clays and Clay Minerals 47 425438 10.1346/CCMN.1999.0470405.CrossRefGoogle Scholar
Trifiro, F. and Vaccari, A., (2004) Handbook of Layered Materials New York Marcel Dekker 251 pp.Google Scholar
Ulibarri, M.A. Fernández, J.M. Labajos, F.M. and Rives, V., (1991) Anionic clays with variable valence cations: Synthesis and characterization of [Co1−xAlx(OH)](CO3)x/2 ·nH2O Chemistry of Materials 3 626630 10.1021/cm00016a013.CrossRefGoogle Scholar
Xu, R. and Zeng, H.C., (2001) Synthesis of nanosize supported hydrotalcite-like compounds CoAlx(OH)2+2x(CO3)y(NO3)x−2y, nH2O on α-A12O3 Chemistry of Materials 13 297303 10.1021/cm000526i.CrossRefGoogle Scholar
Yao, K. Taniguchi, M. Nakata, M. Takahashi, M. and Yamagishi, A., (1998) Electrochemical scanning tunneling microscopy observation of ordered surface layers on an anionic clay-modified electrode Langmuir 14 28902895 10.1021/la971137e.CrossRefGoogle Scholar
Yao, K. Taniguchi, M. Nakata, M. Takahashi, M. and Yamagishi, A., (1998) Nanoscale imaging of molecular adsorption of metal complexes on the surface of a hydrotalcite crystal Langmuir 14 24102414 10.1021/la970672b.CrossRefGoogle Scholar
Zhao, Y. Li, F. Zhang, R. Evans, D.G. and Duan, X., (2002) Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging step Chemistry of Materials 14 42864291 10.1021/cm020370h.CrossRefGoogle Scholar