Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T07:45:41.391Z Has data issue: false hasContentIssue false

Physico-Chemical Properties of Illite Suspensions after Cycles of Freezing and Thawing

Published online by Cambridge University Press:  28 February 2024

V. Schwinka*
Affiliation:
Technical University Riga, Institute for Silicate Materials, Azenes Str. 14, LV-1048, Riga, Latvia
H. Mörtel
Affiliation:
University Erlangen Nuerenberg, Institute of Material Science, Glass and Ceramics Department, Martensstraße 5, D-91058, Erlangen, Germany
*
E-mail of corresponding author: svinka@ktf.rtu.lv

Abstract

The effect of freezing and thawing on the rheological behavior of illite suspensions was studied by examining viscosity and plasticity. Stability of suspensions was characterized by a hysteresis loop of thixotropy. Thermal gravimetric and differential scanning calorimetry analysis were also used. After initial freezing and thawing, the flow curves of the suspensions show an increased viscosity, an “irregular up line”, and a greater hysteresis loop of thixotropy. The ratios of mean viscosity of previously frozen (F) and control (O) samples (ηFO) for non-expandable 2:1 phyllosilicates ranges from 1.3 to 2.1. Addition of monovalent (0.1% Na2SiO3) and divalent cations (0.3% CaCl2 or BaCl2) increase and decrease the shear-stress difference between F and O samples, respectively. Prior freezing of clay samples results in an increase of plasticity by ∼20–30%. The thermal analysis data of F samples show an increase in weight loss, and a decrease in enthalpy of dehydration. The changes of physico-chemical properties from cycles of freezing and thawing are long lasting. The freezing memory effect of illite-type clays is expected to play an important role in ceramic processing, i.e., casting processes, plastic formation, and sintering.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chang, J.C. Lange, F.E. and Pearson, D.S., 1994 Viscosity and yield stress of alumina slurries containing large concentrations of electrolyte Journal of the American Ceramic Society 77 1926 10.1111/j.1151-2916.1994.tb06952.x.CrossRefGoogle Scholar
Funk, J.E., 1996 The Methylene Blue Index for Whiteware Body Control New York Science of Whiteware, Alfred 615.Google Scholar
Guo, L. Zhang, Y. Uchida, N. and Uematsu, K., 1997 Influence of temperature on stability of aqueous alumina slurry containing polyelectrolyte dispersant Journal of the European Ceramic Society 17 345350 10.1016/S0955-2219(96)00179-3.CrossRefGoogle Scholar
Kahr, G. Madsen, E.T. and Herausgeber, K EE, 1994 Bestimmung der Kationen-austauschvermögens und der Oberfläche von Bentoniten, Mit und Kaolinit durch Methylenblauadsorbtion Berichte der Deutschen Ton- und Tonmineralgruppe, Regensburg 154159.Google Scholar
Krause, E. Berger, I. Plaue, T. and Schulle, W., 1982 Technologie der Keramik, Bd.2 Berlin VEB Bauwesen.Google Scholar
Kumor, M.K., 1989 Microstructural changes of monomineral clay under cyclic freezing-thawing processes Rozprawka Academia Techniczna Polska, Bydgoszovy 34 1139.Google Scholar
Mörtel, H. Cimmers, A. Schwinka, V., Braga, I. Cavalini, S. and Cesare, EG D, 1995 The influence of porosing additive on properties of Latvian bricks Fourth Euro-Ceramics Conference, Volume 12, Bricks and Roofing Tiles Italy CNR — IRTEC 107116.Google Scholar
Murad, E. and Wagner, U., 1996 The thermal behavior of an Fe-rich illite Clay Minerals 6 4552 10.1180/claymin.1996.031.1.04.CrossRefGoogle Scholar
Post, E. Winkler, S. and Selb, , 1992 Characterization of ceramic materials by thermal analysis Keramische Zeitschrift 44 762766 (in German).Google Scholar
Salmang, H. and Scholze, H., 1982 Keramik. Teil I. Allgemeine Grundlagen und wichtige Eigenschaften Berlin Springer-Verlag 10.1002/crat.2170171119.CrossRefGoogle Scholar
Schababerle, R. Wagner, I.E. and Czurda, K.A., 1988 Influence of freeze-thaw-cycles on clay structures Tone in der Umwelttechnik 247273.Google Scholar
Schober, G., 1991 Characterization of plastic clay masses processing and the effect of microorganisms .Google Scholar
Schwinka, V. and Mörtel, H., 1995 Der Einwirkung vorhergehender Kälteeinwirkung auf physikochemische Eigenschaften von Tonen Sprechsaal Keramik Materials 128 15.Google Scholar
Schwinka, V. Mörtel, H., Braga, I. Cavalini, S. and Cesare, EG D, 1995 The influence of additives on the “Freezing-memory effect” of Baltic clays Fourth Euro-Ceramics Conference, Volume 12, Bricks and Roofing Tiles Italy CNR — IRTEC 97105.Google Scholar
Sposito, G. and Prost, R., 1982 Structure of water adsorbed on Smectites Chemical Reviews 82 553573 10.1021/cr00052a001.CrossRefGoogle Scholar
Suzuki, K. Hiroyuki, M. and Toshiani, M., 1988 Non-frozen water in the frozen paste of montmorillonite. The influence of replaceable cations on the amount of non-frozen water. II Reports of the Industrial Research Institute of Nagoya 137 256260.Google Scholar
Xu, Z. and Yoon, R.H., 1989 A study of hydrophobic coagulation Journal of Colloid Interface Science 134 427434 10.1016/0021-9797(90)90153-F.CrossRefGoogle Scholar