Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T19:24:36.104Z Has data issue: false hasContentIssue false

Phase-Transition Process in the Hydrothermal Zeolitization of Volcanic Ash into LTA and FAU Structures

Published online by Cambridge University Press:  01 January 2024

Jorge D. Monzón
Affiliation:
Centro de Investigación y Desarrollo en Ciencias Aplicadas Dr. J.J. Ronco (CINDECA) (CONICET-CIC-UNLP), 47 N°257, B1900 AJK La Plata, Argentina
Maximiliano R. Gonzalez*
Affiliation:
Centro de Investigación y Desarrollo en Ciencias Aplicadas Dr. J.J. Ronco (CINDECA) (CONICET-CIC-UNLP), 47 N°257, B1900 AJK La Plata, Argentina
Mercedes Muñoz
Affiliation:
Centro de Investigación y Desarrollo en Ciencias Aplicadas Dr. J.J. Ronco (CINDECA) (CONICET-CIC-UNLP), 47 N°257, B1900 AJK La Plata, Argentina
Andrea M. Pereyra
Affiliation:
Centro de Investigación y Desarrollo en Ciencias Aplicadas Dr. J.J. Ronco (CINDECA) (CONICET-CIC-UNLP), 47 N°257, B1900 AJK La Plata, Argentina Universidad Tecnológica Nacional - Facultad Regional La Plata, 60 y 124, 1900 La Plata, Argentina
Elena I. Basaldella
Affiliation:
Centro de Investigación y Desarrollo en Ciencias Aplicadas Dr. J.J. Ronco (CINDECA) (CONICET-CIC-UNLP), 47 N°257, B1900 AJK La Plata, Argentina
*
*E-mail address of corresponding author: maximi_gonz@yahoo.com.ar

Abstract

Minerals such as quartz, present widely in various volcanic ashes, remain unaltered throughout the low-temperature hydrothermal process currently used in industry to obtain zeolites, causing an incomplete hydrothermal transformation of the starting solid. This study presents a novel and cost-effective procedure which improves the reactivity of ash toward the generation of zeolite by increasing the availability of silica and alumina components. This method leads to a final product with a large zeolite content. The transformation consisted of an ash-activation step followed by hydrothermal zeolitization. The influence of the structural, chemical, and morphological characteristics of the volcanic ash as well as the effect of the activation procedure on the ash reactivity were studied. A collected sample (VA) and an amorphous fraction obtained after VA sieving (VA40, retained on #40 mesh) were used for zeolite production. These solids were alkaline-treated separately, aged, and reacted under controlled conditions of temperature at autogenous pressure. Throughout the process, the solid phases were characterized by X-ray diffraction, energy dispersive X-ray microanalysis, scanning electron microscopy, Fourier-transform infrared spectroscopy, and N2adsorption-desorption porosimetry measurements. After activation and alkaline aging, the presence of quartz and plagioclase minerals in the natural ash seemed to improve the growth of NaAlSiO4 polymorphs, which in turn were transformed easily to zeolite structures. Even under adequate pretreatment and suitable synthesis conditions, the coarse non-crystalline fraction led to low conversion, while the highest conversions to zeolites A and X were obtained from the natural ash. The outcomes of the present study could be used to improve the conversion levels of other non-conventional aluminosiliceous minerals into zeolites.

Type
Article
Copyright
Copyright © Clay Minerals Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Fadala, S., Chakkamalayath, J., Al-Bahar, S., Al-Aibani, A., & Ahmed, S. (2017). Significance of performance based specifications in the qualification and characterization of blended cement using volcanic ash. Construction and Building Materials, 144, 532540.Google Scholar
Baerlocher, C., McCusker, L. B., & Olson, D. H. (2007). Atlas of Zeolite Framework Types. Elsevier.Google Scholar
Belviso, C., Abdolrahimi, M., Peddis, D., Gagliano, E., Sgroi, M., Lettino, A., Roccaro, P., Vagliasindi, F. G. A., Falciglia, P. P., Di Bella, G., Giustra, M. G., & Cavalcante, F. (2021). Synthesis of zeolite from volcanic ash: Characterization and application for cesium removal. Microporous and Mesoporous Materials, 319, 111045.Google Scholar
Boscoboinik, J. A., Yang, X. Y. B., Shaikhutdinov, S., & Freund, H. J. (2013). Building blocks of zeolites on an aluminosilicate ultra-thin film. Microporous and Mesoporous Materials, 165, 158162.10.1016/j.micromeso.2012.08.014CrossRefGoogle Scholar
Botto, I. L., Canafoglia, M. E., Gazzoli, D., & González, M. J. (2013). Spectroscopic and microscopic characterization of volcanic ash from puyehue-(Chile) eruption: Preliminary approach for the application in the arsenic removal. Journal of Spectroscopy, 1–8. https://doi.org/10.1155/2013/254517Google Scholar
Breck, D. W. (1974). Zeolite Molecular Sieves. Wiley.Google Scholar
Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60, 309319.Google Scholar
Canafoglia, M. E., Vasallo, M., Barone, V., & Botto, I. L. (2012). Problems associated to natural phenomena: potential effects of PCCVC eruption on the health and the environment in different zones of Villa La Angostura, Neuquén, Argentina. AUGMDOMUS, 4, 111.Google Scholar
Chen, L., Qian, J.-Y., Yang, C., Xu, P.-P., Zhu, D.-D., Zhong, J., et al. (2020). Direct synthesis of 5A zeolite from palygorskite: the influence of crystallization directing agent on the separation performance for hexane isomers. Clays and Clay Minerals,68, 18.Google Scholar
Collini, E., Osores, M. S., Folch, A., Viramonte, J. G., Villarosa, G., & Salmuni, G. (2013). Volcanic ash forecast during the June 2011 Cordón Caulle eruption. Natural Hazards, 66, 389412.Google Scholar
Covey, J., Dominelli, L., Horwell, C. J., Rachmawati, L., Martin del Pozzo, A. L., Armienta, M. A., Nugroho, F., & Ogawa, R. (2021). Carers' perceptions of harm and the protective measures taken to safeguard children's health against inhalation of volcanic ash: A comparative study across Indonesia, Japan and Mexico. International Journal of Disaster Risk Reduction, 59, 102194.Google Scholar
Crundwell, F. K. (2014). The mechanism of dissolution of minerals in acidic and alkaline solutions: Part II Application of a new theory to silicates, aluminosilicates and quartz. Hydrometallurgy, 149, 265275.Google Scholar
Dimitrijevic, R., Dondur, V., Vulic, P., Markovic, S., & Macura, S. (2004). Structural characterization of pure Na-nephelines synthesized by zeolite conversion route. Journal of Physics and Chemistry of Solids, 65, 16231633.10.1016/j.jpcs.2004.03.005CrossRefGoogle Scholar
Du, X., & Wu, E. (2007). Porosity of microporous zeolites A, X and ZSM-5 studied by small angle X-ray scattering and nitrogen adsorption. Journal of Physics and Chemistry of Solids, 68, 16921699.Google Scholar
Elissondo, M., Baumann, V., Bonadonna, C., Pistolesi, M., Cioni, R., Bertagnini, A., Biass, S., Herrero, J. C., & Gonzalez, R. (2016). Chronology and impact of the 2011 Cordón Caulle eruption, Chile. Natural Hazards and Earth System Sciences, 16, 675704.Google Scholar
Folch, A., Jorba, O., & Viramonte, J. (2008). Volcanic ash forecast - Application to the May 2008 Chaitén eruption. Natural Hazards and Earth System Sciences, 8, 927940.Google Scholar
Gautam, P. K., Kalla, P., Jethoo, A. S., Agrawal, R., & Singh, H. (2018). Sustainable use of waste in flexible pavement: A review. Construction and Building Materials, 180, 239253.Google Scholar
Gonzalez, M. R., Pereyra, A. M., Bosch, P., Fetter, G., Lara, F. V. H., & Basaldella, E. I. (2016). Structural and morphological evolutions of spent FCC catalyst pellets toward NaA zeolite. Journal of Materials Science, 51, 50615072.Google Scholar
Gougazeh, M., Kooli, F., & Buhl, J. C. (2019). Removal efficiency of basic blue 41 by three zeolites prepared from natural Jordanian kaolin. Clays and Clay Minerals, 67, 143153.Google Scholar
Gregg, S. J., & Sing, K. S. W. (1982). Adsorption Surface Area and Porosity. Academic Press.Google Scholar
Hamilton, J. P., Brantley, S. L., Pantano, C. G., Criscenti, L. J., & Kubicki, J. D. (2001). Dissolution of nepheline, jadeite and albite glasses: Toward better models for aluminosilicate dissolution. Geochimica et Cosmochimica Acta, 65, 36833702.Google Scholar
He, X., Yao, B., Xia, Y., Huang, H., Gan, Y., & Zhang, W. (2020). Coal fly ash derived zeolite for highly efficient removal of Ni2+ in waste water. Powder Technology, 367, 4046.Google Scholar
Horvath, G., & Kawazoe, K. (1983). Method for the calculation of effective pore size distribution in molecular sieve carbon. Journal of Chemical Engineering of Japan, 16, 470475.Google Scholar
Jiménez-Alvarez, F. J., & Téllez-Jurado, L. (2010). Efecto de un aditivo plastificante comercial sobre la estructura cristalina de la plagioclasa utilizada en la fabricación de blocks ligeros de concreto. Superficies y Vacío, 23, 104108.Google Scholar
Klüser, L., Erbertseder, T., & Meyer-Arnek, J. (2013). Observation of volcanic ash from Puyehue–Cordón Caulle with IASI. Atmospheric Measurement Techniques, 6, 3546.Google Scholar
Kumar, A., Dhoble, S. J., Peshwe, D. R., & Bhatt, J. (2014). Structural and Photoluminescence properties of nepheline-structure NaAlSiO4: Dy3+ nanophosphors. Journal of Alloys and Compounds, 609, 100106.Google Scholar
Lee, M. G., Park, J. W., Kam, S. K., & Lee, C. H. (2018). Synthesis of Na-A zeolite from Jeju Island scoria using fusion/hydrothermal method. Chemosphere, 207, 203208.Google Scholar
Lemougna, P. N., MacKenzie, K. J. D., & Melo, U. F. C. (2011). Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash. Ceramics International, 37, 30113018.Google Scholar
Lemougna, P. N., Wang, K.-T., Tang, Q., Nzeukou, A. N., Billong, N., Melo, U. C., & Min, C. X. (2018). Review on the use of volcanic ashes for engineering applications. Resources, Conservation and Recycling, 137, 177190.Google Scholar
Loewenstein, W. (1954). The distribution of aluminum in the tetrahedra of silicates and aluminates. American Mineralogist, 39, 9296.Google Scholar
Lutz, W., Engelhardt, G., Fichtner-Schmittler, H., Peuker, C., Löffler, E., & Siegel, H. (1985). The influence of water steam on the direct phase transformation of zeolite NaA to nepheline by thermal treatment. Crystal Research and Technology, 20, 12171223.Google Scholar
Mohamed, R. M., Mkhalid, I. A., & Barakat, M. A. (2015). Rice husk ash as a renewable source for the production of zeolite NaY and its characterization. Arabian Journal of Chemistry, 8, 4853.Google Scholar
Monzón, J. D., Pereyra, A. M., Conconi, M. S., & Basaldella, E. I. (2017). Phase transformations during the zeolitization of fly ashes. Journal of Environmental Chemical Engineering, 5, 15481553.Google Scholar
Muñoz, M., Pasquale, G., Sathicq, A. G., Romanelli, G. P., Cabello, C. I., & Gazzoli, D. (2019). Volcanic ash as reusable catalyst in the green synthesis of 3H-1,5-benzodiazepines. Green Processing and Synthesis, 8, 600610.Google Scholar
Rao, Y. J., & Murthy, I. S. N. (1974). Nepheline as a metasomatic product. American Mineralogist, 59, 690693.Google Scholar
Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 6571.Google Scholar
Rodríguez-Carvajal, J. (2001). Recent developments of the program FULLPROF, in commission on powder diffraction (IUCr). Newsletter, 26, 1219.Google Scholar
Roy, B. N. (1990). Infrared spectroscopy of lead and alkaline-earth aluminosilicate glasses. Journal of the American Ceramic Society, 73, 846855.Google Scholar
Sanhueza Núñez, V. M., & Bennun Torres, L. D. (2015). Synthesis of zeolitic materials from volcanic ash in presence and absence of cetyltrimethylammonium bromide. Revista Internacional de Contaminación Ambiental, 31, 185193.Google Scholar
Siddique, R. (2011). Effect of volcanic ash on the properties of cement paste and mortar. Resources, Conservation and Recycling, 56, 6670.Google Scholar
Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquérol, J., & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Applied Chemistry, 57, 603619.Google Scholar
Tait, K. T., Sokolova, E., Hawthorne, F. C., & Khomyakov, A. P. (2003). The crystal chemistry of Nepheline. The Canadian Mineralogist, 41, 6170.10.2113/gscanmin.41.1.61CrossRefGoogle Scholar
Tchakoute, H. K., Elimbi, A., Yanne, E., & Djangang, C. N. (2013). Utilization of volcanic ashes for the production of geopolymers cured at ambient temperature. Cement and Concrete Composites, 38, 7581.Google Scholar
Tchakoute Kouamo, H., Elimbi, A., Mbey, J. A., Ngally Sabouang, C. J., & Njopwouo, D. (2012). The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products: A comparative study. Construction and Building Materials, 35, 960969.Google Scholar
Upadhyay, D. (2012). Alteration of plagioclase to nepheline in the Khariar alkaline complex, SE India: Constraints on metasomatic replacement reaction mechanisms. Lithos, 155, 1929.Google Scholar
Wilson, T. M., Cole, J. W., Stewart, C., Cronin, S. J., & Johnston, D. M. (2011). Ash storms: impacts of wind-remobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile. Bulletin of Volcanology, 73, 223239.Google Scholar
Yamada, H., Sukenaga, S., Ohara, K., Anand, C., Ando, M., Shibata, H., Okubo, T., & Wakihara, T. (2018). Comparative study of aluminosilicate glass and zeolite precursors in terms of Na environment and network structure. Microporous and Mesoporous Materials, 271, 3340.Google Scholar