Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-19T23:49:04.088Z Has data issue: false hasContentIssue false

Oxidative Power of Smectites Measured by Hydroquinone

Published online by Cambridge University Press:  01 July 2024

Thomas D. Thompson
Affiliation:
Georgia Kaolin Company, 1185 Mary St., Elizabeth, New Jersey 07207, U.S.A.
William F. Moll Jr.
Affiliation:
Georgia Kaolin Company, 1185 Mary St., Elizabeth, New Jersey 07207, U.S.A.

Abstract

The oxidative power of a smectite can be measured quantitatively by oxidation of hydro-quinone to p-benzoquinone in a clay slurry. Oxidation takes place in the presence of O2 (air) but not N2 unless Fe3+ or Cu2+ are the exchangeable cations. This study examined 26 smectite samples with varying compositions and processing. The oxidative power increases with decreasing Li-fixation and increasing cation exchange capacity. Li-fixation does not depend upon the tetrahedral Al. The cation exchange capacity can decrease markedly by mere storage in water.

The oxidation proceeds principally on the surface by adsorbed oxygen molecules or radicals. A mechanism is proposed. With Fe3+ or Cu2+ present, even under N2, oxidation occurs via electron transfer. With smectites containing Fe2+, both the Fe and the hydroquinone are oxidized in the same reaction.

Résumé

Résumé

Le pouvoir oxydant d’une smectite peut être mesuré quantitativement par oxydation de l’hy-droquinone en p-benzoquinone dans une pâte d’argile. L’oxydation a lieu en présence de Oz (air) mais pas en présence de N2 à moins que Fe3+ et Cu2+ ne soient les cations échangeables. Cette étude a porté sur 26 échantillons de smectite de compositions différentes et ayant subi des traitements variés. Le pouvoir oxydant augmente lorsque la fixation de Li décroit et lorsque la capacité d’échange cationique augmente. La fixation de Li ne dépend pas de Al tétraédrique. La capacité d’échange cationique peut diminuer notablement à la suite d’une simple conservation dans l’eau.

L’oxydation a lieu principalement sur la surface, par le biais des molécules d’oxygène ou des radicaux adsorbés. Un mécanisme est proposé. En présence de Fe3+ ou Cu2+, même sans N2, l’oxydation existe par suite de transferts d’élections. Dans le cas des smectites contenant Fe2+, Fe et l’hydro-quinone sont oxydés simultanément au cours de la même réaction.

Kurzreferat

Kurzreferat

Die Oxidationskraft eines Smectits kann durch Oxidation von Hydrochinon zu p-Benzochinon in einer Tonaufschlämmung quantitativ gemessen werden. Die Oxidation findet in Gegenwart von 02 (Luft), aber nicht von N2 statt, außer, wenn Fe3+ oder Cu2+ die austauschbaren Kationen sind. In dieser Untersuchung wurden 26 Smectitproben unterschiedlicher Zusammensetzung und Vorbehandlung untersucht. Die Oxidationskraft steigt mit abnehmender Li-Fixierung und zunehmender Kationenaustauschkapazität an. Die Li-Fixierung hängt nicht vom Gehalt an tetraed-rischem Al ab. Die Kationenaustauschkapazität kann allein durch Aufbewahrung in Wasser erheblich herabgesetzt werden.

Die Oxidation verläuft grundsätzlich an der Oberfläche durch absorbierte Sauerstoffmoleküle oder Radikale. Ein Mechanismus wird vorgeschlagen. In Gegenwart von Fe3+ oder Cu2+ tritt, sogar unter N2, Oxidation durch Elektronenübergang ein. An Smectiten, die Fe2+ enthalten, werden sowohl das Eisen als auch das Hydrochinon in derselben Reaktion oxidiert.

Резюме

Резюме

Окислительную активность смектита можно количественно измерить посредством окисления гидрохинона в шламме глины с выходом р-бензохинона. Окисление происходит в присутствии O2 (воздух), но в присутствии N2 только тогда, когда Fe3+ или Сu2+ являются обменными катионами. В этой работе исследовалось 26 образцов смектита в различных смесях и различными методами переработки. С понижением Li-фиксации и с повышением способности катионообмена интенсивность окисления повышается. Li-фиксация не зависит от тетраэдрального А1. Простое хранение в воде может заметно понизить способность катионо¬обмена.

Окисление происходит главным образом на поверхности вследствие адсорбированных молекул или радикалов кислорода. Предполагают, что в присутствии Fe3+ или Сu2+, даже в присутствии N2, окисление происходит через перенос электронов. Если смектиты содержат Fe2+, то и Fe и гидрохинон окисляются одновременно.

Type
Research Article
Copyright
Copyright © 1973 The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blumstein, A., (1965) Polymerization of adsorbed monomers—I. Preparation of the clay-polymer complex J. Polymer Sci. 3 7 36533664.Google Scholar
Blumstein, A., (1965) Polymerization of adsorbed monomers —II. Thermodegradation of the inserted polymer J. Polymer Sci. 3 7 26652672.Google Scholar
Brindley, G. W. and Thompson, T. D., (1970) Methylene blue absorption by montmorillonites. Determination of surface areas and exchange capacities with different initial cation saturations (Clay-Organic Studies XIX) Iseael J. Chem. 8 409415.CrossRefGoogle Scholar
Burges, N. A., Hurst, H. M. and Walkden, B., (1964) The phenolic constituents of humic acid and their relation to lignin of the plant cover Geochim. Cosmochim. 28 15471554.CrossRefGoogle Scholar
Dubach, P., Mehta, N. C., Jakab, T., Martin, F. and Roulet, N., (1964) Chemical investigations on soil-humic substances Geochim. Cosmochim. 28 15671578.CrossRefGoogle Scholar
Eisenhauer, H. R., (1967) Chemical oxidation of industrial wastes International Conference on Water for Peace, Vol. Washington, D.C. U. S. Government Printing Office 163169.Google Scholar
Feifer, J. P., Smith, M. A. and Willeford, B. R. Jr., (1959) Oxidation of phenols by periodate J. Org. Chem. 24 9093.CrossRefGoogle Scholar
Friedlander, H. Z., (1963) Spontaneous polymerization in and on clays Am. Chem. Soc, Div. Polymer Chem., Preprints 4 2 300306.Google Scholar
Goodman, N. S. and Siegel, S. M., (1959) Reaction-directing properties of non-enzymic macromolecules: Pyrogallol oxidation in the system Fe (III)-cellulose Nature 184 5354.CrossRefGoogle Scholar
Greene-Kelly, R., (1955) Dehydration of the montmoril-lonite minerals Mineral Mag. 30 604615.Google Scholar
Kaiser, E. T. and Weidman, S. W., (1964) The mechanism of the periodate oxidation of aromatic systems —I. A kinetic study of the periodate oxidation of hydroquinone and p-methoxyphenol in acidic solution J. Am. Chem. Soc. 86 43544358.CrossRefGoogle Scholar
Khoobiar, S., Carter, J. L. and Lucchesi, P. J., (1968) The electronic properties of A12O3 and the chemisorption of H2O, H2 and O2 J. Phys. Chem. 72 16821688.CrossRefGoogle Scholar
Latimar, W. M., (1964) Oxidation Potentials 2nd Ed. New Jersey Prentice Hall.Google Scholar
Nierenstein, M., (1915) Oxidation product of pyrogallol J. Chem. Soc. 107 12171220.CrossRefGoogle Scholar
Okazaki, R., Smith, H. W. and Moodie, C. D., (1962) Development of a cation exchange capacity procedure with few inherent errors Soil Sci. 93 343349.CrossRefGoogle Scholar
(1970) Sadtler Standard Spectra Sadtler Research Laboratories, Philadelphia, Pennsylvania.Google Scholar
Solomon, D. H. and Rosser, M. J., (1965) Reactions catalyzed by minerals — I. Polymerization of styrène J. Appi. Polymer Sci. 9 12611271.CrossRefGoogle Scholar
Solomon, D. H. and Swift, J. D., (1967) Reactions catalyzed by minerals-II. Chain termination in free-radical polymerizations J. Appi. Polymer Sci. 11 25672575.CrossRefGoogle Scholar
Solomon, D. H. and Loft, B. C., (1968) Reactions catalyzed by minerals-III. The mechanism of spontaneous interlamellar polymerizations in alumino-silicates J. Appi Polymer Sci. 12 12531262.CrossRefGoogle Scholar
Solomon, D. H., Loft, B. C. and Swift, J. D., (1968) Reactions catalyzed by minerals-IV. The mechanism of the benzidine-blue reaction Clay Minerals 7 389397.CrossRefGoogle Scholar
Weidman, S. W. and Kaiser, E. T., (1966) The mechanism of the periodate oxidation of aromatic systems—III. A kinetic study of the periodate oxidation of catechol J. Am. Chem. Soc. 88 58205827.CrossRefGoogle Scholar
Ziechmann, W., (1964) Spectroscopic investigations of lignin, humic substances and peat Geochim. Cosmo-chim. 28 15551566.CrossRefGoogle Scholar