Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-01T23:01:31.808Z Has data issue: false hasContentIssue false

Organomineral Derivatives Obtained by Reacting Organochlorosilanes with the Surface of Silicates in Organic Solvents

Published online by Cambridge University Press:  01 July 2024

E. Ruiz-Hitzky*
Affiliation:
University of Louvain, Laboratoire de Physico-Chimie Minérale, Place Croix du Sud 1, 1348, Louvain-la-Neuve, Belgium
J. J. Fripiat*
Affiliation:
University of Louvain, Laboratoire de Physico-Chimie Minérale, Place Croix du Sud 1, 1348, Louvain-la-Neuve, Belgium
*
*Instituto de Edafología y Biología Vegetal, C.S.I.C., c/Serrano 115 dpdo., Madrid 6.
Centre de Recherche sur les Solides á Organisation Cristalline Imparfaite, C.N.R.S., Orleans-Cedex, 45045, France.

Abstract

Stable organomineral derivatives are formed by reaction of organochlorosilanes with certain phyllosilicates. Organosiloxyl functions are grafted on silanol groups present at external mineral surfaces.

Water molecules adsorbed on external mineral surfaces may cause hydrolysis of the reactant organosilicon products, with liberation of HCl. This, in turn, may react with the silicate: octahedral cations are extracted from the lattice and fresh Si-OH groups, capable of further grafting, are formed on the mineral surface.

On the other hand, when difunctional reagents such as methylvinyldichlorosilane are used and if the ratio of adsorbed water to added reactive is adequate, then polymeric species with polysiloxane chains are grafted on the mineral.

Because of its high content of silanol groups, sepiolite forms organomineral compounds having a relatively high organic matter content. With chrysotile, the amount of organic matter grafted to the silicate, is considerably smaller, but it increases appreciably if water is added to the reacting products. This is attributed to hydrolysis of the organic reactant and subsequent destruction of external “brucitic” layers by acid attack.

Type
Research Article
Copyright
Copyright © 1976 The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aragón de la Cruz, F., Esteban, J. and Vitón, C. (1972) Interaction of chlorosilanes with montmorillonite and vermiculite: Proc. Int. Clay Conf., Madrid 1972, pp. 705710.Google Scholar
Barrios-Neira, J. Rodrique, L. and Ruiz-Hitzky, E., (1974) Mise en évidence de groupements organiques insaturés greffés sur la sépiolite J. Microscopie 20 295298.Google Scholar
Berger, G., (1941) The structure of montmorillonite Chem. Weekblad 38 4243.Google Scholar
Brauner, K. and Preisinger, A., (1956) Structure of sepiolite Miner. Petr. Mitt. 6 120140.Google Scholar
Brown, G. Greene-Kelly, R. and Norrish, K., (1952) Organic derivatives of montmorillonite Clay Min. Bull. 1 7 214220.CrossRefGoogle Scholar
Cahen, G. Marechal, J. E. M. della Faille, M. and Fripiat, J. J., (1965) Pore size distribution by a rapid continuous flux method Anal. Chem. 37 133137.CrossRefGoogle Scholar
Deuel, H. Huber, G. and Iberg, R., (1950) Organische Derivate von Tonmineralien Helv. Chim. Acta 33 12291232.CrossRefGoogle Scholar
Edwards, H., (1970) Study of the reactions of surface hydroxyl groups of a chrysotile asbestos with organic silanes by means of i.r. spectroscopy J. appl. Chem. 20 7679.CrossRefGoogle Scholar
Frazier, S. E. Bedford, J. A. Hower, J. and Kenney, M. E., (1967) An inherently fibrous polymer Inorg. Chem. 6 16931696.CrossRefGoogle Scholar
Fripiat, J. J. and Mendelovici, E. (1968) Dérivés organiques des silicates—I: Le dérivé méthylé du chrysotile: Bull. Soc. Chim. pp. 483492.Google Scholar
Gieseking, J. E., (1949) The clay minerals in soils Advan. Agron. 1 59204.Google Scholar
Greenland, D. J. and Russell, E. W., (1955) Organoclay derivatives and the origin of the negative charge on clay particles Trans. Farad. Soc. 51 13001307.CrossRefGoogle Scholar
Lentz, C. W., (1964) Silicate minerals as sources of trimethylsilyl—silicates and silicate structure analysis of sodium silicate solutions Inorg. Chem. 3 574579.CrossRefGoogle Scholar
Noll, W., (1968) Chemistry and Technology of Silicones New York Academic.Google Scholar
Pundsack, F. L. and Reimschussel, L., (1956) The properties of asbestos—III: Basicity of chrysotile suspensions J. Phys. Chem. 60 12181222.CrossRefGoogle Scholar
Zapata, L., Castelein, J., Mercier, J. P. and Fripiat, J. J. (1972) Dérivés organiques des silicates—II: Les dérivés vinyliques et allyliques du chrysotile et de la vermiculite: Bull. Soc. Chim. pp. 5463.Google Scholar