Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-11T22:21:06.972Z Has data issue: false hasContentIssue false

Observation of Two 4-Coordinated Al Sites in Montmorillonite using High Magnetic Field Strength 27Al MQMAS NMR

Published online by Cambridge University Press:  01 January 2024

Takahiro Ohkubo
Affiliation:
Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
Koji Kanehashi
Affiliation:
Nippon Steel Corporation, Advanced Technology Research Laboratory, 20-1 Shintomi, Futtsu City, Chiba 293-8511, Japan
Koji Saito
Affiliation:
Nippon Steel Corporation, Advanced Technology Research Laboratory, 20-1 Shintomi, Futtsu City, Chiba 293-8511, Japan
Yasuhisa Ikeda*
Affiliation:
Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
*
*E-mail address of corresponding author: yikeda@nr.titech.ac.jp

Abstract

Analyses of the layer structure of Na-montmorillonite have been performed using 27Al MAS and 27Al MQMAS NMR techniques. Results of 27Al MAS NMR measurements at higher magnetic field strength (16.4 T) suggest that the 4-coordinated Al site in Na-montmorillonite has two different structures. This was confirmed by the fact that two peaks corresponding to 4-coordinated Al are observed in the 27Al MQMAS NMR at high magnetic field strength. The ratio of two 4-coordinated Al sites was found to be affected by water in the interlayer space because the area ratio of cross peaks corresponding to two 4-coordinated Al sites changes with the water content.

Type
Research Article
Copyright
Copyright © 2003, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amoureux, J.P., (1993) High-resolution solid-state NMR for spin 3/2 and 9/2: the multi-quantum transitions method Solid State Nuclear Magnetic Resonance 2 8388 10.1016/0926-2040(93)90066-V.Google Scholar
Amoureux, J.P. and Fernandez, C., (1998) Triple, quintuple and higher order multiple quantum MAS NMR of quadrupolar nuclei Solid State Nuclear Magnetic Resonance 10 212223 10.1016/S0926-2040(97)00027-1.Google Scholar
Amoureux, J.P. Fernandez, C. and Steuernagel, S., (1996) Z filtering in MQMAS NMR Journal of Magnetic Resonance A123 116118 10.1006/jmra.1996.0221.Google Scholar
Behrens, H.J. and Schnabel, B., (1982) The second order influence of the nuclear quadrupole interaction on the central line in the NMR of quadrupolar nuclei using rapid sample spinning Physica B 114 185190 10.1016/0378-4363(82)90036-5.Google Scholar
Bharadwaj, R.K. Mehrabi, A.R. Hamilton, C. Trujillo, C. Murga, M. Fan, R. Chavira, A. and Thompson, A.K., (2002) Structure-property relationships in cross-linked polyesterclay nanocomposites Polymer 43 36993705 10.1016/S0032-3861(02)00187-8.Google Scholar
Campanati, M. Casagrande, M. Fagiolino, I. Lenarda, M. Storaro, L. Battagliarin, M. and Vaccari, A., (2002) Mild hydrogenation of quinoline 2. A novel Rh-containing pillared layered clay catalyst Journal of Molecular Catalysis A: Chemical 184 267272 10.1016/S1381-1169(02)00003-1.Google Scholar
Drachman, S.R. Roch, G.E. and Smith, M.E., (1997) Solid state NMR characterization of the thermal transformation of Fuller’s Earth Solid State Nuclear Magnetic Resonance 9 257267 10.1016/S0926-2040(97)00069-6.Google Scholar
Fernandez, C. and Amoureux, J.P., (1995) 2D multiquantum MAS-NMR spectroscopy of 27Al in aluminophosphate molecular sieves Chemical Physics Letters 242 449454 10.1016/0009-2614(95)00768-Y.Google Scholar
Ferris, J.P. and Ertem, G., (1993) Montmorillonite catalysis of RNA oligomer formation in aqueous solution. A model for the prebiotic formation of RNA Journal of American Chemical Society 115 1227012275 10.1021/ja00079a006.Google Scholar
Frydman, L. and Harwood, J.S., (1995) Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle-spinning NMR Journal of American Chemical Society 117 53675368 10.1021/ja00124a023.Google Scholar
Fukushima, Y., (1984) X-ray diffraction study of aqueous montmorillonite emulsions Clays and Clay Minerals 32 320326 10.1346/CCMN.1984.0320410.Google Scholar
Hannus, I. Pálinkó, I. Lázaár, K. Nagy, J.B. and Kiricsi, I., (1995) The chemical state of Sn in Sn-montmorillonite; A multinuclear MAS NMR and 119Sn Mössbauer spectroscopic study Journal of Molecular Structure 349 179182 10.1016/0022-2860(95)08738-H.Google Scholar
Hawkins, R.K. and Egelstaff, P.A., (1980) Interfacial water structure in montmorillonite from neutron diffraction experiments Clays and Clay Minerals 28 1928 10.1346/CCMN.1980.0280103.Google Scholar
Janes, N. and Oldfield, E., (1985) Prediction of silicon-29 nuclear magnetic resonance chemical shifts using a group electronegativity approach: applications to silicate and aluminosilicate structures Journal of American Chemical Society 107 67696775 10.1021/ja00310a004.Google Scholar
Kanehashi, K. and Saito, K., (2002) Structural analysis of boron compounds using 11B-3QMAS solid state NMR Journal of Molecular Structure 602 105113 10.1016/S0022-2860(01)00772-4.Google Scholar
Kanehashi, K. Saito, K. and Sugisawa, H., (2000) Structural analysis of boron carbide using 2D 11B-MQMAS NMR Chemistry Letters 588 589.Google Scholar
Khan, M.M.T. Samad, S.A. Siddiqui, M.R.H. Bajaj, H.C. and Ramachandraiah, G., (1991) Formation of a rhodium(II) monohydrido complex derived from Wilkinson’s complex RhCl(PPh3)3 in the interlamellar spaces of montmorillonite and catalytic hydrogenation of cyclohexene Polyhedron 10 27292736 10.1016/S0277-5387(00)86174-4.Google Scholar
Kundla, E. Samoson, A. and Lippmaa, E., (1981) Highresolution NMR of quadrupolar nuclei in rotating solids Chemical Physics Letters 83 229232 10.1016/0009-2614(81)85451-6.Google Scholar
Lippmaa, E. Mägi, M. Samson, A. Engelhardt, G. and Grimmer, A.R., (1980) Structural studies of silicates by solid-state high-resolution 29Si NMR Journal of American Chemical Society 102 48894893 10.1021/ja00535a008.Google Scholar
Massiot, D. Touzo, B. Trumeau, D. Coutures, J.P. Virlet, J. Florian, P. and Grandinetti, P.J., (1996) Two-dimensional magic-angle spinning isotropic reconstruction sequences for quadrupolar nuclei Solid State Nuclear Magnetic Resonance 6 7383 10.1016/0926-2040(95)01210-9.Google Scholar
Mastalir, Király, Z. Szörgy, G. and Bartók, M., (2001) Stereoselective hydrogenation of 1-phenyl-1-pentyne over low-loaded Pd-montmorillonite catalysts Applied Catalysis A: General 213 133140 10.1016/S0926-860X(00)00889-9.Google Scholar
Mooney, R.W. Keenan, A.G. and Wood, L.A., (1952) Adsorption of water vapor by montmorillonite. II. Effect of exchangeable ions and lattice swelling as measured by X-ray diffraction Journal of American Chemical Society 74 13711374 10.1021/ja01126a002.Google Scholar
Muller, D. Gessner, W. Behrens, H.J. and Scheler, G., (1981) Determination of the aluminium coordination in aluminium-oxygen compounds by solid-state high-resolution 27Al NMR Chemical Physics Letters 79 5962 10.1016/0009-2614(81)85288-8.Google Scholar
Rocha, J., (1999) Single- and triple-quantum 27Al MAS NMR study of the thermal transformation of kaolinite Journal of Physical Chemistry B 103 98019804 10.1021/jp991516b.Google Scholar
Saito, K. Kanehashi, K. and Komaki, I., (2001) Applications of NMR techniques to coal science Annual reports on NMR Spectroscopy 44 2372 10.1016/S0066-4103(01)44003-8.Google Scholar
Staunton, S. and Quiquampoix, H., (1994) Adsorption and conformation of bovine serum albumin on montmorillonite: modification of the balance between hydrophobic and electrostatic interactions by protein methylation and pH variation Journal of Colloid and Interface Science 166 8994 10.1006/jcis.1994.1274.Google Scholar
Stebbins, J.F. Zhao, P. Lee, S.K. and Oglesby, J.V., (2001) Direct observation of multiple oxygen sites in oxide glasses: recent advances from triple-quantum magic-angle spinning nuclear magnetic resonance Journal of Non-Crystalline Solids 293 6773 10.1016/S0022-3093(01)00653-6.Google Scholar