Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-21T05:22:53.445Z Has data issue: false hasContentIssue false

A New Kaolin Deposit in Western Africa: Mineralogical and Compositional Features of Kaolinite from Caluquembe (Angola)

Published online by Cambridge University Press:  01 January 2024

Esperança Tauler
Affiliation:
Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona, Barcelona, Spain
Jingyao Xu*
Affiliation:
Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona, Barcelona, Spain
Marc Campeny
Affiliation:
Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona, Barcelona, Spain Departament de Mineralogia, Museu de Ciències Naturals de Barcelona, Barcelona, Spain
Sandra Amores
Affiliation:
Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona, Barcelona, Spain
Joan Carles Melgarejo
Affiliation:
Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona, Barcelona, Spain
Salvador Martinez
Affiliation:
Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona, Barcelona, Spain
Antonio O. Gonçalves
Affiliation:
Departamento de Geologia, Universidade Agostinho Neto, Luanda, Angola
*
*E-mail address of corresponding author: jingyao.xu@hotmail.com

Abstract

Large kaolin deposits developed by weathering on Precambrian granitic rocks have been discovered in the Caluquembe area, Huíla province, Angola. To determine accuracy of analysis and to evaluate the kaolinite grade, a full-profile Rietveld refinement by X-ray Powder Diffraction (XRPD) and Thermal Gravimetric Analysis (TGA) was used. Caluquembe kaolin is composed mainly of kaolinite (44–93 wt.%), quartz (0–23 wt.%), and feldspar (4–14 wt.%). The Aparicio-Galán-Ferrell index (AGFI), calculated by XRPD profile refinement, indicates low- and medium-defect kaolinite. Kaolinite particles show a platy habit and they stack together forming ‘booklets’ or radial aggregates; they also occur as small anhedral particles in a finer-grained mass. Muscovite-kaolinite intergrowths have also been found. Whole-rock chemical analysis included major, trace, and Rare Earth Elements (REE). Chondrite-normalized REE patterns show the same tendency for all samples, with a significant enrichment in Light Rare Earth Elements (LREE). Mineralogical and compositional features of the Caluquembe kaolin indicate that it is a suitable material for the manufacture of structural products, such as bricks, paving stones, and roofing tiles. In addition, the significant REE contents of the Caluquembe kaolin can be considered as a potential future target of mining exploration.

Type
Original Paper
Copyright
Copyright © Clay Minerals Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, P. (1974). Rare earth elements adsorption on clay minerals. Bulletin du groupe français des argiles, 26, 193199.CrossRefGoogle Scholar
Aparicio, P. & Galán, E. (1999). Mineralogical interference on kaolinite crystallinity index measurements. Clays and Clay Minerals, 47, 1227.10.1346/CCMN.1999.0470102CrossRefGoogle Scholar
Aparicio, P., Galán, E., & Ferrell, R. E. (2006). A new kaolinite order index based on XRD profile fitting. Clay Minerals, 41, 811817.10.1180/0009855064140220CrossRefGoogle Scholar
Ashwal, L. D. & Twist, D. (1994). The Kunene complex, Angola/Namibia: a composite massif-type anorthosite complex. Geological Magazine, 131, 579591.CrossRefGoogle Scholar
Bailey, S. W. (1980). Structure of layer silicates. Pp. 1123 in: Crystal Structures of Clay Minerals and their X-ray Identification. (Brindley, G.W. and Brown, G., editors). Monograph, 5. London: Mineralogical Society.Google Scholar
Bao, Z., & Zhao, Z. (2008). Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geology Reviews, 13, 519535.10.1016/j.oregeorev.2007.03.005CrossRefGoogle Scholar
Bish, D. L. (1993). Rietveld refinement of the kaolinite structure at 1.5 K. Clays and Clay Minerals, 41, 738744.10.1346/CCMN.1993.0410613CrossRefGoogle Scholar
Bermúdez-Lugo, O. (2014) Angola and Namibia, Minerals Year Book. U.S. Geological Survey.Google Scholar
De Carvalho, H., Tassinari, C., Alves, P., Guimaraes, F., & Simoes, M. C. (2000). Geochronological review of the Precambrian in western Angola: Links with Brazil. Journal of African Earth Sciences, 31, 383402.CrossRefGoogle Scholar
Detellier, C., & Schoonheydt, R. A. (2014). From platy kaolinite to nanorolls. Elements, 10, 201206.CrossRefGoogle Scholar
Dedzo, G. K. & Detellier, C. (2016). Functional nanohybrid materials derived from kaolinite. Applied Clay Science, 130, 3339.10.1016/j.clay.2016.01.010CrossRefGoogle Scholar
Dill, H. G. (2016). Kaolin: Soil, rock and ore. From the mineral to the magmatic, sedimentary and metamorphic environments. Earth-Science Reviews, 161, 16129.10.1016/j.earscirev.2016.07.003CrossRefGoogle Scholar
Ekosse, G.-I. (2000). The Makoro kaolin deposit, southeastern Botswana: its genesis and possible industrial applications. Applied clay science, 16, 301320.10.1016/S0169-1317(99)00059-9CrossRefGoogle Scholar
Ekosse, G.-I. (2010). Kaolin deposits and occurrences in Africa: Geology, mineralogy and utilization. Applied Clay Science, 50, 212236.10.1016/j.clay.2010.08.003CrossRefGoogle Scholar
Elliot, W. C., Gardner, D. J., Malla, P., & Riley, E. (2018). A new look at the occurrences of the rare-earth elements in the Georgia Kaolins. Clays and Clay Minerals, 66(3), 245260.10.1346/CCMN.2018.064096CrossRefGoogle Scholar
Flanagan, M. D. (2016). Clays in Mineral Commodity summaries (Vol. 50). U.S. Geological Survey.Google Scholar
Galán, E. (2006). Genesis of clay minerals, Pp, 11291162 in: Handbook of Clay Science. (Bergaya, F., Theng, B.K.G., and Lagaly, G. editors) Developments in Clay Science 1. Elsevier, Amsterdam.10.1016/S1572-4352(05)01042-1CrossRefGoogle Scholar
Galán, E., Aparicio, P., Fernández-Caliani, J.C., Miras, A., Márquez, G. Fallick, A. and Clauer, N. (2016) New insights on mineralogy and genesis of kaolin deposits: The Burela kaolin deposit (Northwestern Spain). Applied Clay Science, 131, 1426.10.1016/j.clay.2015.11.015CrossRefGoogle Scholar
Gomes, C., Velho, J. A., & Guimaraes, F. (1994). Kaolin deposit of Mevaiela (Angola) alteration product of anorthosite: assessment of kaolin potentialities for applications in paper. Applied Clay Science, 9, 97106.10.1016/0169-1317(94)90029-9CrossRefGoogle Scholar
Guggenheim, S., Adams, J. M., Bain, D. C., Bergaya, F., Brigatti, M. F., Drits, V. A., Formoso, M. L.L., Galán, E., Kogure, T., & Stanjek, H. (2006). Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l'etude des Argiles, nomenclature committee for 2006. Clay Minerals, 41, 863877.CrossRefGoogle Scholar
Hanson, R.E. (2003). Proterozoic geochronology and tectonic evolution of southern Africa. Pp. 427–463 in: Proterozoic East Gondwana: Supercontinent Assembly and Breakup (Yoshida, M., Windley, B.F., and Dasgupta, S., editors). Geological Society of London, Special Publications, 206, 427463.Google Scholar
Heckroodt, R. O. (1991). Clay and clay materials in South Africa. Journal of the South African Institute of Mining and Metallurgy, 91, 343363.Google Scholar
Hinckley, D. N. (1963). Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays and Clay Minerals, 11, 229235.10.1346/CCMN.1962.0110122CrossRefGoogle Scholar
Jelsma, H., Perrit, S.H., Armstrong, R.A., & Ferreira, H.F. (2011). SHRIMP U-Pb zircon geochronology of basement rocks of the Angolan Shield, western Angola. in: Proceedings of the 23rd CAG, Johannesburg. Council for Geoscience, Pretoria 203.Google Scholar
Kadir, S., & Kart, F. (2009). The occurrence and origin of the Sögüt kaolinite deposits in the Paleozoic Saricayaka granite-granodiorite complexes and overlying Neogene sediments (Bilecik, northwestern Turkey). Clays and Clay Minerals, 57, 311329.CrossRefGoogle Scholar
Laufer, F., Yariv, S., & Steinberg, M. (1984). The adsorption of quadrivalent cerium by kaolinite. Clay Minerals, 19, 137149.CrossRefGoogle Scholar
Liu, X., Liu, X., & Hu, Y. (2015). Investigation of the thermal behaviour and decomposition kinetics of kaolinite. Clay Minerals, 50, 199209.CrossRefGoogle Scholar
López-Galindo, A., Viseras, C., & Cerezo, P. (2007). Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Applied Clay Science, 36, 5163.10.1016/j.clay.2006.06.016CrossRefGoogle Scholar
MacKenzie, R. C. (1957). The differential thermal investigation of Clays (456 pp). London: Mineralogical Society (Clay Minerals Group).Google Scholar
Mansa, R., Ngassa Piegang, G. B., & Detellier, C. (2017). Kaolinite aggregation in book-like structures from non-aqueous media. Clays and Clay Minerals, 65, 193205.10.1346/CCMN.2017.064059CrossRefGoogle Scholar
Marques, M. M. (1977). Esboço das grandes unidades geomorfológicas de Angola (2a aproximação). Instituto de Investigaçao Cientifica Tropical. Garcia de Orta, Sérvicio Geologico, Lisboa, 2(1), 4143.Google Scholar
Mayer, A., Hofmann, A. W., Sinigoi, S., & Morais, E. (2004). Mesoproterozoic Sm-Nd and U-Pb ages for the Kunene Anorthosite Complex of SWAngola. Precambrian Research, 133, 187206.CrossRefGoogle Scholar
McCourt, S., Armstrong, R. A., Jelsma, H., & Mapeo, R. B. M. (2013). New U-Pb SHRIMP ages from the Lubango region, SW Angola: insights into the Palaeoproterozoic evolution of the Angolan Shield, southern Congo Craton. Africa. Journal of the Geological Society of London, 170, 353363.10.1144/jgs2012-059CrossRefGoogle Scholar
McDonough, W. F., & Sun, S. S. (1995). The composition of the earth. Chemical Geology, 120, 223225.10.1016/0009-2541(94)00140-4CrossRefGoogle Scholar
Montenegro de Andrade, M. (1954). Rochas graníticas de Angola. Memórias, série geológica IV. Ministério do Ultramar, 464 pp.Google Scholar
Moore, D.M. & Reynolds, R.C. Jr. (1997). X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, 332 pp.Google Scholar
Murray, H. H. (1999). Applied clay mineralogy today and tomorrow. Clay Minerals, 34, 3949.CrossRefGoogle Scholar
Murray, H. H. (2000). Traditional and new applications for kaolin, smectite, palygorskite: a general overview. Applied Clay Science, 17, 207221.CrossRefGoogle Scholar
Nesbitt, H. W. & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48, 15231534.CrossRefGoogle Scholar
Nkalih Mefire, A., Njoya, A., Yongue Fouateu, R., Mache, J. R., Tapon, N. A., Nzeukou Nzeugang, A., Melo Chinje, U., Pilate, P., Flament, P., Siniapkine, S., Ngono, A., & Fagel, N. (2015). Occurrences of kaolin in Koutaba (west Cameroon): Mineralogical and physicochemical characterization for use in ceramic products. Clay Minerals, 50, 593606.CrossRefGoogle Scholar
Nguie, G., Dedzo, G.K. & Detellier, C. (2016). Synthesis and catalytic application of palladium nanoparticles supported on kaolinite-based nanohybrid materials. Dalton Transactions, 45.Google Scholar
Njoya, A., Nkoumbou, C., Grosbois, C., Njopwouo, D., Njoya, D., Courtin-Nomade, A., Yvon, J., & Martin, F. (2006). Genesis of Mayouom kaolin deposit (western Cameroon). Applied Clay Science, 32, 125140.10.1016/j.clay.2005.11.005CrossRefGoogle Scholar
Nyakairu, G. W. A., & Koeberl, C. (2001). Mineralogical and chemical composition and distribution of rare earth elements in clay-rich sediments from central Uganda. Geochemical Journal, 35, 1328.10.2343/geochemj.35.13CrossRefGoogle Scholar
Nyakairu, G. W. A., Koeberl, C., & Kurzweil, H. (2001). The Buwambo kaolin deposit in central Uganda: Mineralogical and chemical composition. NOTE. Geochemical Journal, 35, 245256.CrossRefGoogle Scholar
Phipps, J. S. (2014). Engineering minerals for performance applications: an industrial perspective. Clay Minerals, 49, 116.CrossRefGoogle Scholar
Pruett, R. J. (2016). Kaolin deposits and their uses: Northern Brazil and Georgia, USA. Applied Clay Science, 131, 313.10.1016/j.clay.2016.01.048CrossRefGoogle Scholar
Rudnick, R.L. & Gao, R. (2003). Composition of the continental crust. Pp. 164 in: The Crust (Rudnick, R.L., editor). Treatise of Geochemistry, 3. Elsevier-Pergamon, Oxford, UK.Google Scholar
Saikia, N., Bharali, D., Sengupta, P., Bordolo, D., Goswamee, R., Saikia, P., & Borthakur, P. C. (2003). Characterization, beneficiation and utilization of a kaolinite clay from Assam, India. Applied Clay Science, 24, 93103.CrossRefGoogle Scholar
Sanematsu, K. & Watanabe, Y. (2016). Characteristics and genesis of ion adsorption-type Rare Earth Element deposits. Reviews in Economic Geology, 18, 5579.Google Scholar
Savianno, G., Violo, M., Pieruccini, U., & Lopesda Silva, E.T. (2005). Kaolin deposits from the northern sector of the Cunene Anorthosite Complex (southern Angola). Clays and Clay Minerals, 53, 674685.CrossRefGoogle Scholar
Schroeder, P. A., & Erickson, G. (2014). Kaolin: From Ancient porcelains to nanocomposites. Elements, 10, 177182.CrossRefGoogle Scholar
Silva, M.V.S., (1973). Carta Geologica de Angola. Folha N 207 Gungo. Scale 1: 100 000.Google Scholar
Silva, A.T.S.F. & Simões, M.V.C. (1980/1981). Geologia da região de Caluquembe (Angola), Livro de Homenagem ao Professor Doutor Carlos Teixeira pela sua jubilação, Bol. Soc. Geol. Portugal, 22, 363375.Google Scholar
Stoch, L. (1974). Mineraly Ilaste (‘Clay Minerals‘) (pp. 186193). Warsaw: Geological Publishers.Google Scholar
Taylor, S. R., & McLennan, S. H. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33, 241265.10.1029/95RG00262CrossRefGoogle Scholar
Thorez, J. (1975). Phyllosilicates and clay minerals. A laboratory handbook for their X-ray diffraction analysis (p. 580). France: Lelotte (Disno).Google Scholar
TOPAS (2009). General Profile and Structure Analysis Software for Powder Diffraction Data, version 4.2, Bruker AXS Gmbh, Karlsruhe, Germany, 2009.Google Scholar
Wilson, J. R., Halls, C., & Spiro, B. (1997). A comparison between the China clay deposits of China and Corwall. Proceedings of the Ussher Society, 9, 195200.Google Scholar
Xiao, Y., Huang, L., Long, Z., Feng, Z., & Wang, L. (2016). Adsorption ability of rare earth elements on clay minerals and its practical performance. Journal of Rare Earths, 34(5), 543548.CrossRefGoogle Scholar
Young, R. A. & Hewat, A. W. (1988). Verification of the triclinic crystal structure of kaolinite. Clays and Clay Minerals, 36, 225232.CrossRefGoogle Scholar