Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-01T06:18:35.366Z Has data issue: false hasContentIssue false

Mineralogical, Chemical, and Physical Characterization of Synthetic Al-Substituted Maghemites (γ−Fe2xAlxO3)

Published online by Cambridge University Press:  01 January 2024

Marcelo A. Batista*
Affiliation:
Universidade Estadual de Maringá, UEM, Departamento de Agronomia, Av. Colombo 5790, 87020-900, Maringá, PR, Brazil
Antonio C. S. da Costa
Affiliation:
Universidade Estadual de Maringá, UEM, Departamento de Agronomia, Av. Colombo 5790, 87020-900, Maringá, PR, Brazil
Jerry M. Bigham
Affiliation:
The Ohio State University, School of Environment and Natural Resources, 2021 Coffey Road, 210 Kottman Hall, 43210-1085 Columbus, OH, USA
Henrique de Santana
Affiliation:
Universidade Estadual de Londrina, UEL, Departamento de Quèmica, 86051-990, Londrina, PR, Brazil
Dimas A. M. Zaia
Affiliation:
Universidade Estadual de Londrina, UEL, Departamento de Quèmica, 86051-990, Londrina, PR, Brazil
Ivan G. de Souza junior
Affiliation:
Universidade Estadual de Maringá, UEM, Departamento de Agronomia, Av. Colombo 5790, 87020-900, Maringá, PR, Brazil
*
* E-mail address of corresponding author: batistamar@hotmail.com

Abstract

Maghemite (γ-Fe2O3) is a ferrimagnetic Fe oxide commonly found in tropical and subtropical soils, especially in the topsoil where it is usually a product of burning. Isomorphic substitution (IS) of the Fe in maghemite by different metals (mainly Al3+) can modify its mineralogical and chemical attributes, and these modifications may be important to understanding the formation and properties of this mineral in soils and sediments. The objective of this work was to evaluate the crystallochemical alterations of synthetic, Al-substituted maghemites prepared by the precipitation of magnetites from alkaline aqueous media containing FeSO4·7H2O with increasing amounts of Al2(SO4)3·7H2O to obtain hypothetical Al3+ for Fe3+ substitutions ranging from 0.0 to 40.0 mol %. The Al-substituted magnetites were washed and dried, and then heated to 250ºC for 4 h to form yellowish red maghemites that were characterized by total chemical analysis, X-ray diffraction, specific surface area (SSA), mass-specific magnetic susceptibility, infrared spectroscopy, transmission electronic microscopy, and color. Increasing Al3+ substitution to an experimental maximum of 15.9 mol % decreased both the a0 dimension of the cubic unit cell (a0 = 0.8339 − 396.157 × 10−16 Al, r2 = 0.99) and the mean crystallite dimension (MCD = 76.4–3.15Al, r2 = 0.79) of the maghemites. With the decrease in MCD came a more yellowish color, an increase in SSA, and a decrease in crystallinity as measured through extraction of the samples with acid ammonium oxalate. The mass-specific magnetic susceptibility of the maghemites increased with Al3+ substitution up to 5.3 mol % and then decreased with further replacement of Fe by Al. Solid-phase aluminum in excess of 16 mol % substitution appeared to occur as a separate, poorly crystalline phase that was X-ray amorphous.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anand, R.R. and Gilkes, R.J., 1987 Iron oxides in lateritic soils from Western Australia European Journal of Soil Science 38 607622 10.1111/j.1365-2389.1987.tb02158.x.CrossRefGoogle Scholar
Armstrong, R.J. Morrish, A.H. and Sawatzkya, G.A., 1966 Mössbauer study of ferric ions in the tetrahedral and octahedral sites of a spinel Physics Letters 23 414416 10.1016/0031-9163(66)91069-9.CrossRefGoogle Scholar
Barron, V. and Torrent, J., 1984 Influence of aluminum substitution on the color of synthetic hematites Clays and Clay Minerals 32 157158 10.1346/CCMN.1984.0320211.CrossRefGoogle Scholar
Batista, M.A. Costa, ACS da Souza Junior, I.G. and Bigham, J.M., 2008 Cristallochemical characterization of synthetic Zn-substituted maghemites (γ-Fe2−xZnxO3) Revista Brasileira de. Ciência do Solo 32 561568 10.1590/S0100-06832008000200011.CrossRefGoogle Scholar
Benjamin, M.M. Hayes, K.F. and Leckie, J.O., 1982 Removal of toxic metals from power-generation waste streams by adsorption and coprecipitation Journal of the Water Pollution Control Federation 54 14721481.Google Scholar
Brunauer, S. Emmett, P.H. and Teller, E., 1938 Adsorption of gases in multimolecular layers Journal of the American Chemical Society 60 309319 10.1021/ja01269a023.CrossRefGoogle Scholar
Cabello, E. Morales, M.P. Serna, C.J. Barron, V. and Torrent, J., 2009 Magnetic enhancement during the crystallization of ferryhydrite at 25 and 50ºC Clays and Clay Minerals 57 4653 10.1346/CCMN.2009.0570105.CrossRefGoogle Scholar
Campbell, S.J. Kaczmarek, W.A. and Hofmann, M., 2000 Mössbauer insight to metallurgy, materials science and engineering Hyperfine Interactions 126 175186 10.1023/A:1012699402294.CrossRefGoogle Scholar
Cornell, R.M. and Schwertmann, U., 1996 The Iron Oxides: Structure, Properties, Reactions, Occurrence, and Uses Weinheim VCH.Google Scholar
Costa, ACS d Bigham, J.M. Rhoton, F.E. and Traina, S.J., 1999 Quantification and characterization of maghemite in soils derived from volcanic rocks in southern Brazil Clays and Clay Minerals 47 466473 10.1346/CCMN.1999.0470408.CrossRefGoogle Scholar
Cullity, B.D., 1972 Introduction to Magnetic Materials Massachusetts, USA Addison-Wesley, Reading.Google Scholar
da Costa, G.M., 1995 Mössbauer spectroscopy and X-ray diffraction studies of maghemite (γ-Fe2O3) and aluminum-substituted maghemites [γ-(Fe1−yAly)2O3] with 0.0 ≤ y ≤ 0.66 Belgium University of Gent.Google Scholar
da Costa, G.M. De Grave, E. Vandenberg, R.E. Bowen, L.H. and de Bakker, P.M.A., 1994 The center shift in the Mössbauer spectra of maghemite and aluminum maghemites Clays and Clay Minerals 42 628633 10.1346/CCMN.1994.0420515.CrossRefGoogle Scholar
da Costa, G.M. De Grave, E. and Vanderberghe, R.E., 1998 Mössbauer studies of magnetite and Al-substituted maghemites Hyperfine Interactions 117 207243 10.1023/A:1012691209853.CrossRefGoogle Scholar
Dearing, J., 1994 Environmental Magnetic Susceptibility. Using the Bartington MS2 system .Google Scholar
Fontes, M.P.F. and Weed, S.B., 1991 Iron oxides in selected Brazilian Oxisols: I. Mineralogy Soil Science Society of America Journal 55 11431149 10.2136/sssaj1991.03615995005500040040x.CrossRefGoogle Scholar
Gillot, B. and Rousset, A., 1990 On the limit of aluminum substitution in Fe3O4 and γ-Fe2O3 Physica Status Solidi. A. Applied Research 118 K5K8 10.1002/pssa.2211180141.CrossRefGoogle Scholar
Gillot, B. Jemmali, F. and Chassagneux, F., 1982 Availability of Fe ions in Cr- or Al-substituted magnetites with relevance to the process of oxidation in defect phase γ Journal of Solid State Chemistry 45 317323 10.1016/0022-4596(82)90177-3.CrossRefGoogle Scholar
Greaves, C.A., 1983 Powder neutron diffraction investigation of vacancy ordering and covalence in g-Fe2O3 Journal of Solid State Chemistry 49 325333 10.1016/S0022-4596(83)80010-3.CrossRefGoogle Scholar
Haneda, K. and Morrish, A.H., 1977 Vacancy ordering in γ-Fe2O3 small particles Solid State Communications 22 779782 10.1016/0038-1098(77)90067-9.CrossRefGoogle Scholar
He, Y.T. and Traina, S.J., 2007 Transformation of magnetite to goethite under alkaline pH conditions Clay Minerals 42 1319 10.1180/claymin.2007.042.1.02.CrossRefGoogle Scholar
Holland, T.J.B. and Redfern, S.A.T., 1997 Unit-cell refinement from powder diffraction data: the use of regression diagnostics Mineralogical Magazine 61 6577 10.1180/minmag.1997.061.404.07.CrossRefGoogle Scholar
Kaye, G.W.C. and Laby, T.H., 1975 Tables of Physical and Chemical Constants .Google Scholar
Ketterings, Q.M. Bigham, J.M. and Laperch, V., 2000 Changes in soil mineralogy and texture caused by slash-and-burn fires in Sumatra, Indonesia Soil Science Society of America Journal 64 11081117 10.2136/sssaj2000.6431108x.CrossRefGoogle Scholar
Klug, H.P. and Alexander, L.E., 1974 X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials 2nd New York Wiley.Google Scholar
Kosmas, C.S. Franzmeier, D.P. and Schulze, D.G., 1986 Relationship among derivative spectroscopy, color, crystallite dimensions, and Al substitution of synthetic goethites and hematites Clays and Clay Minerals 34 625634 10.1346/CCMN.1986.0340602.CrossRefGoogle Scholar
McKeague, J.A. and Day, J.H., 1966 Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soils Canadian Journal of Soil Science 46 1322 10.4141/cjss66-003.CrossRefGoogle Scholar
Post, D.F. Bryant, R.B. Batchily, A.K. Huete, A.R. Levine, S.J. Mays, M.D. Escadafal, R., Bigham, J.M. Ciolkosz, E.J., 1993 Correlations between field and laboratory measurements of soil color Soil Color Madison, Wisconsin, USA Soil Science Society of America 3549.Google Scholar
Prasad, N.K. Panda, D. Singh, S. and Bahadur, D., 2005 Preparation of cellulose-based biocompatible suspension of nano-sized γ-AlxFe2−xO3 IEEE Transactions on Magnetics 41 40994101 10.1109/TMAG.2005.855349.CrossRefGoogle Scholar
Resende, M. Coey, J.M.D. and Allan, J., 1986 The magnetic soils of Brazil Earth and Planetary Science Letters 78 322326 10.1016/0012-821X(86)90071-3.CrossRefGoogle Scholar
Sambatti, J.A. Costa, ACS d Muniz, A.S. Sengik, E S Junior, I G and Bigham, J.M., 2002 Relações entre a substituição isomórfica de Fe por Al e as caracterèsticas quèmicas e mineralógicas de hematitas sintéticas Revista Brasileira de Ciência do Solo 26 117124 10.1590/S0100-06832002000100011.CrossRefGoogle Scholar
Schulze, D.G. and Schwertmann, U., 1984 The influence of aluminium on iron oxides: X. Properties of Al-substituted goethites Clay Minerals 19 521539 10.1180/claymin.1984.019.4.02.CrossRefGoogle Scholar
Schulze, D.G. and Schwertmann, U., 1987 The influence of aluminium on iron oxides: XIII. Properties of goethites synthesized in 0.3 M KOH at 25ºC Clay Minerals 22 8392 10.1180/claymin.1987.022.1.07.CrossRefGoogle Scholar
Schwertmann, U. and Cornell, R.M., 1991 Iron Oxides in the Laboratory — Preparation and Characterization Weinheim, Germany Verlagsgesellschaft.Google Scholar
Schwertmann, U. and Fechter, H., 1984 The influence of aluminum on iron oxides. XI. Aluminum-substituted maghemite in soils and its formation Soil Science Society of America Journal 48 14621463 10.2136/sssaj1984.03615995004800060054x.CrossRefGoogle Scholar
Schwertmann, U. Taylor, R.M., Dixon, J.B. Weed, S.B., 1989 Iron Oxides Minerals in Soil Environments 2nd Madison, Wisconsin, USA Soil Science Society of America 379438.Google Scholar
Schwertmann, U. Friedl, J. Stanjek, H. and Schulze, D.G., 2000 The effect of Al on Fe oxides. XIX. Formation of Al-substituted hematite from ferrihydrite at 25ºC and pH 4–7 Clays and Clay Minerals 48 159172 10.1346/CCMN.2000.0480202.CrossRefGoogle Scholar
Sidhu, P.S., 1988 Transformation of trace element-substituted maghemite to hematite Clays and Clay Minerals 36 3138 10.1346/CCMN.1988.0360105.CrossRefGoogle Scholar
Takei, H. and Chiba, S., 1966 Vacancy ordering in an epitaxially grown single crystal of γ-Fe2O3 Journal of the Physical Society of Japan 21 12551263 10.1143/JPSJ.21.1255.CrossRefGoogle Scholar
Taylor, R.M. and Schwertmann, U., 1974 Maghemite in soils and its origin. II. Maghemite syntheses at ambient temperature and pH 7 Clay Minerals 10 299310 10.1180/claymin.1974.010.4.08.CrossRefGoogle Scholar
Waldron, R.D., 1955 Infrared spectra of ferrites Physical Review 99 17271735 10.1103/PhysRev.99.1727.CrossRefGoogle Scholar
White, W.B. and De Angelis, B.A., 1967 Interpretation of the vibrational spectra of spinels Spectrochimica Acta 23A 985995 10.1016/0584-8539(67)80023-0.CrossRefGoogle Scholar
Wiriyakitnateekul, W. Suddhiprakarn, A. Kheoruen-Romne, I. Smirk, M.N. and Gilkes, R.J., 2007 Iron oxides in tropical soils on various parent materials Clay Minerals 42 437451 10.1180/claymin.2007.042.4.02.CrossRefGoogle Scholar
Wolska, E., 1990 Studies on the ordered and disordered aluminium substituted maghemite Solid State Ionics 44 119123 10.1016/0167-2738(90)90052-S.CrossRefGoogle Scholar
Wolska, E. and Schwertmann, U., 1989 The vacancy ordering and distribution of aluminum ions in g-(Fe, Al)2O3 Solid State Ionics 32/33 214218 10.1016/0167-2738(89)90224-5.CrossRefGoogle Scholar
Zachara, J.M. Ainsworth, CC B GE Jr. Catalano, J.G. McKinley, J.P. Qafoku, O. Smith, S.C. Szecsody, J.E. Traina, S.J. and Warner, A.J., 2004 Chromium speciation and mobility in a high level nuclear waste vadose zone plume Geochimica et Cosmochimica Acta 68 1330 10.1016/S0016-7037(03)00417-4.CrossRefGoogle Scholar