Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T16:13:36.707Z Has data issue: false hasContentIssue false

Mica-Derived Vermiculites as Unstable Intermediates

Published online by Cambridge University Press:  01 July 2024

J. A. Kittrick*
Affiliation:
Department of Agronomy and Soils, Washington State University, Pullman, Washington 99163, U.S.A.
*
Professor of Soils. Appreciation is expressed to Mr. E. W. Hope for his help in the experimental work.

Abstract

Stability determinations were made by solubility methods on two trioctahedral mica-derived vermiculites. The phlogopite-derived vermiculite was found to be unstable under acid solution conditions, where stabilities of montmorillonite, kaolinite and gibbsite had previously been determined. An attempt was next made to locate a possible montmorillonite-vermiculite-amorphous silica triple point. This triple point involved conditions of alkaline pH, high pH4SiO4 and high Mg2+. These are conditions where phlogopite and biotite-derived vermiculites are most likely to control equilibria if they are stable minerals. The montmorillonite-vermiculite-amorphous silica samples went to the montmorillonite-magnesite-amorphous silica triple point, leaving no stability area whatsoever for the vermiculites. These large particle-size, trioctahedral, mica-derived vermiculites appear to be unstable under all conditions of room T and P.

Arguments are presented indicating that micas are unstable in almost all weathering environments. A hypothesis is proposed that mica-derived vermiculites result from the unique way in which unstable micas degrade in these environments. It is proposed that vermiculite derives from a series of reactions whose relative rates often result in an abundance of vermiculite. These relative reaction rates are slow for mica dissolution, rapid for K removal and other reactions pursuant to vermiculite formation, and slow for vermiculite dissolution. In chemical terms, mica-derived vermiculites may be considered fast-forming unstable intermediates.

Résumé

Résumé

Des déterminations de stabilité ont été effectuées par des méthodes de solubilité sur deux vermiculites dérivées de micas trioctaédriques. La vermiculite dérivée de la phlogopite est instable dans des conditions de solution acide pour lesquelles les stabilités de la montmorillonite, de la kaolinite et de la gibbsite ont été déjà déterminées. On a essayé ensuite de localiser l’éventuel point triple montmorillonite-vermiculite-silice amorphe. Ce point triple implique des conditions de pH alcalin, pH4 SiO4 élevé et Mg2+ élevé. Ce sont des conditions dans lesquelles les vermiculites dérivées de phlogopite et biotite doivent très probablement contrôler l’équilibre si ce sont des minéraux stables. Les échantillons montmorillonite-vermiculite-silice amorphe ont évolué vers le point triple montmorillonite magnésite-silice amorphe, ce qui ne laisse subsister aucune aire de stabilité pour les vermiculites. Les vermiculites à cristaux de grande taille, dérivées de micas trioctaédriques, apparaissent instables dans toutes les conditions de T et P ambiantes.

On présente des arguments qui indiquent que les micas sont instables dans la plupart des environnement d’altération. On fait l’hypothèse que les vermiculites dérivées de micas découlent de l’unique voie selon laquelle les micas instables se dégradent dans ces conditions. On considère que la vermiculite provient d’une série de réactions dont les vitesses relatives entraînent souvent l’abondance de vermiculite. Ces vitesses relatives de réaction sont lentes pour la dissolution du mica, rapides pour l’extraction de K et pour les autres réactions concourant á la formation de la vermiculite, et lentes pour la dissolution de la vermiculite. En termes de chimie, les vermiculites dérivées de mica peuvent être considérées comme des intermédiaires instables à formation rapide.

Kurzreferat

Kurzreferat

An zwei aus trioktaedrischen Glimmern entstandenen Vermiculiten wurden Stabilitätsbestimmungen mit Löslichkeitsmethoden durchgeführt. Der phlogopitbürtige Vermiculit erwies sich als instabil unter sauren Lösungsbedingungen, bei denen früher die Stabilität von Montmorillonit, Kaolinit und Gibbsit bestimmt wurde. Als nächstes wurde versucht, einen gemeinsamen Schnittpunkt für die drei Phasen Montmorillonit-Vermiculit-amorphe Kieselsäure ausfindig zu machen. Dieser Schnittpunkt war durch alkalisches pH, hohes pH4SiO4 und hohe Mg2+ -Gehalte gekennzeichnet. Dieses sind Bedingungen, unter denem am ehesten mit einer Beeinflussung der Gleichgewichte durch phlogopit- und biotitbürtige Vermiculite zu rechnen ist, soweit diese stabile Minerale darstellen. Die aus Montmorillonit- Vermiculit-amorpher Kieselsäure bestehenden Proben gelangten zum Montmorillonit-Magnesit- amorphe Kieselsäure-Schnittpunkt, ohne irgendein Stabilitätsfeld für die Vermiculite offenzulassen. Diese grobkörnigen, trioktaedrischen, glimmerbürtigen Vermiculite scheinen unter allen Bedingungen von Raumtemperatur und -druck instabil zu sein.

Es werden Argumente dafür beigebracht, daß Glimmer nahezu in jedem Verwitterungsmilieu instabil sind. Eine Hypothese wird vorgestellt, der zufolge glimmerbürtige Vermiculite das Ergebnis einer spezifischen Umwandlung sind, der instabile Glimmer unter solchen Bedingungen beim Abbau unterliegen. Es wird angenommen, daß Vermiculite aus einer Folge von Reaktionen entstehen, deren relative Raten oft zu einem Vermiculitüberschuß führen. Diese relativen Reaktionsraten sind langsam für die Glimmer- auflösung, schnell für die K-Freisetzung und andere mit der Vermiculitbildung verbundene Reaktionen, sowie langsam für die Vermiculitauflösung. In der chemischen Terminologie können die glimmerbürtigen Vermiculite als sich schnell bildende, instabile Zwischenstufen betrachtet werden.

Резюме

Резюме

Методами растворения определялась устойчивость двух переотложенных из слюды вермикулитов. В условиях кислотных растворов ранее применявшихся для определения устойчивости монтмориллонита, каолинита и гидраргиллита, переотложенный из флогопита вермикулит оказался неустойчивым. Затем сделали попытку определить местонахождение тройной точки аморфного кремнезема-монтмориллонита-гермикулита. Эта тройная точка включала условия щелочного рН, высокого рН4SiO4 и высокого Mg2+. В этих условиях устойчивые вермикулиты, переотложенные из флогопита и биотита, наверно, более всего регулируют равновесное состояние. Образцы аморфного кремнезема-вермикулита-монтмориллонита перешли на тройную точку аморфного кремнезема-магнезита-монтмориляонита совсем не оставив устойчивой области для вермикулита. Эти крупнозернистые триоктаэдральные верми-кулиты, отложенные из слюды, очевидно, неустойчивы при всех условии комнатной температуры и давления.

Приводят доводы указывающие, что слюды являются неустойчивыми почти что во всех условиях выветривания. Выдвигается гипотеза, что отложенные из слюды вермикулиты результируются вследствие необыкновенного способа распадения слюд во всех фациях. Предполагают, что отложение вермикулита происходит вследствие целого ряда интенсивных взаимных реакций, в результате которых часто образуется много вермикулита. Эти относительные степени реакции медленно растворяют слюду, быстро удаляют К и другие реакции следующие за формованием вермикулита, и медленно растворяют вермикулит. В химической терминологии образующиеся из слюды вермикулиты можно считать быстрообразующимися неустойчивыми переходными типами пород.

Type
Research Article
Copyright
Copyright © 1973 The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This investigation was supported in part by grant 16060 DGK from the Federal Water Pollution Control Administration and from the U.S. Department of the Interior in support of the State of Washington Water Research Center project A-042. Published as Scientific Paper No. 3965, College of Agriculture, Washington State University, Pullman, Washington 99163, U.S,A. Project No. 1885.

References

American Public Health Assoc. (1960) Standard Methods for the Examination of Water and Waste Water. 11th Edn., New York.Google Scholar
Boettcher, A. L., (1966) Vermiculite, hydrobiotite, and biotite in the Rainy Creek igneous complex near Libby, Montana Clay Minerals 6 283296.CrossRefGoogle Scholar
Brown, G. and Newman, A. C. D., (1970) Cation exchange properties of micas—III. Release of potassium sorbed by potassium depleted micas Clay Minerals 8 273278.CrossRefGoogle Scholar
Farmer, V. C. and Wilson, M. J., (1970) Experimental conversion of biotite to hydrobiotite Nature 226 841842.CrossRefGoogle ScholarPubMed
Garrels, R. M. and Christ, C. L., (1965) Solutions, Minerals and Equilibria New York Harper and Row.Google Scholar
Gilkes, R. J., Young, R. C. and Quirk, J. P., (1973) Artificial weathering of biotite—I. Potassium removal by sodium chloride and sodium tetraphenylboron solutions Soil Sci. Soc. Am. Proc. 37 2538.CrossRefGoogle Scholar
Hoda, S. N. and Hood, W. C., (1972) Laboratory alteration of trioctahedral micas Clays and Clay Minerals 20 343358.CrossRefGoogle Scholar
Huang, P. M., Crosson, L. S. and Rennie, D. A., (1968) Chemical dynamics of potassium release from potassium minerals common in soils Trans. 9th Int. Congr. Soil Sci. 2 705712.Google Scholar
Hsu, P. H., (1963) Effect of initial pH, phosphate, and silicate on the determination of aluminum with aluminon Soil Sci. 96 230235.CrossRefGoogle Scholar
Jackson, M. L., (1956) Soil Chemical Analysis—Advanced Course Madison, WI Univ. Wisconsin.Google Scholar
Jackson, M. L., (1963) Interlayering of expansible layer silicates in soils by chemical weathering Clays and Clay Minerals 13 2946.Google Scholar
Kittrick, J. A., 1969a Interlayer forces in montmorillonite and vermiculite Soil Sci. Soc. Am. Proc. 33 217222.CrossRefGoogle Scholar
Kittrick, J. A., 1969b Soil minerals in the Al2O3–SiO2– H2O system and a theory of their formation Clays and Clay Minerals 17 157167.CrossRefGoogle Scholar
Kittrick, J. A., (1970) Synthesis of kaolinite at 25°C and 1 atm Clays and Clay Minerals 18 261267.CrossRefGoogle Scholar
Kittrick, J. A., 1971a Stability of montmorillonites—I. Belle Fourche and Clay Spur montmorillonites Soil Sci. Soc. Am. Proc. 35 140145.CrossRefGoogle Scholar
Kittrick, J. A., 1971b Montmorillonite equilibria and the weathering environment Soil Sci. Soc. Am Proc. 35 815820.CrossRefGoogle Scholar
Klotz, I., (1964) Chemical Thermodynamics New York Bemjamin, Inc..Google Scholar
Livingstone, D. A. (1963) Chemical composition of rivers and lakes. In Data of Geochemistry (Edited by Fleischer, M.). U.S. Geol. Surey Prof. Paper 440-G.Google Scholar
Mackintosh, E. E., Lewis, D. G. and Greenland, D. J., (1971) Dodecylammonium-mica complexes—I. Factors affecting the exchange reaction Clays and Clay Minerals 19 209218.CrossRefGoogle Scholar
Mortland, M. M. and Ellis, B., (1959) Release of potassium as a diffusion controlled process Soil Sci. Soc. Am. Proc. 23 363364.CrossRefGoogle Scholar
Newman, A. C. D., (1969) Cation exchange properties of micas—I. The relation between mica composition and potassium exchange in solutions of different pH J. Soil Sci. 20 357373.CrossRefGoogle Scholar
Newman, A. C. D., 1970a Cation exchange properties of micas—II. Hysteresis and irreversibility during potassium exchange Clay Minerals 8 267272.CrossRefGoogle Scholar
Newman, A. C. D., 1970b The synergetic effect of hydrogen ions on the cation exchange of potassium in micas Clay Minerals 8 361372.CrossRefGoogle Scholar
Newman, A. C. D. and Brown, G., (1966) Chemical changes during the alteration of micas Clay Minerals 6 297310.CrossRefGoogle Scholar
Quirk, J. P. and Chute, J. H., (1968) Potassium release from mica-like clay minerals Trans. 9th Int. Congr. Soil Sci. 2 671681.Google Scholar
Raman, K. V. and Jackson, M. L., (1966) Layer charge relations in clay minerals and micaceous soils and sediments Clays and Clay Minerals 14 5368.CrossRefGoogle Scholar
Rausell-Colom, J. A., Sweatman, T. R., Wells, C. B., Norrish, K., Hallsworth, E. G. and Crawford, D. V., (1965) Studies in the artificial weathering of mica Experimental Pedology London Butterworths 4072.Google Scholar
Reed, M. G. and Scott, A. D., (1962) Kinetics of potassium release from biotite and muscovite in sodium tetraphenylboron solutions Soil Sci. Soc. Am. Proc. 26 437440.CrossRefGoogle Scholar
Robie, R. A. and Waldbaum, D. R. (1968) Thermodynamic properties of minerals and related substances at 298•15°K (25•0°C) and one atmosphere (1•013 Bars) pressure and at higher temperatures: Geol. Survey Bull. 1259, 256 p.Google Scholar
Roth, C. B., Jackson, M. L., Lotse, E. G. and Syers, J. K., (1968) Ferrous-ferric ratio and CEC changes on deferration of weathered micaceous vermiculite Israel J. Chem. 6 261273.CrossRefGoogle Scholar
Routson, R. C. (1970) Mite solubility. Ph.D. Thesis, Washington State University, Pullman, Washington.Google Scholar
Sawhney, B. L. and Voigt, G. K., (1969) Chemical and biological weathering in vermiculite from Transvall Soil Sci. Soc. Am. Proc. 33 625629.CrossRefGoogle Scholar
Schofield, R. K. and Taylor, A. W., (1954) The hydrolysis of aluminum salt solutions J. Chem Soc. 18 44454448.CrossRefGoogle Scholar
Sridhar, K., Jackson, M. L. and Syers, J. K., (1972) Cation and layer charge effects on blister-like osmotic swelling of micaceous vermiculite Amer. Min. 57 18321848.Google Scholar
Wells, C. B. and Norrish, K., (1968) Accelerated rates of release of interlayer potassium from micas Trans. 9th Int. Congr. Soil Sci. 2 683694.Google Scholar
White, D. E., Hem, J. D. and Waring, G. A. (1963) Chemical composition of sub-surface waters. In Data of Geochemistry (Edited by Fleischer, M.). U.S. Geol. Survey Prof. Paper 440-F.Google Scholar