Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-08T02:38:58.475Z Has data issue: false hasContentIssue false

Low-Charge to High-Charge Beidellite Conversion in a Vertisol from South Italy

Published online by Cambridge University Press:  28 February 2024

Dominique Righi
Affiliation:
Laboratoires de Pédologie et de Pétrologie de la surface, UA 721 CNRS Faculté des Sciences, 86022 Poitiers, France
Fabio Terribile
Affiliation:
CNR-ISPAIM, P.O. Box 101, 80040 S. Sebastiano al Vesuvio, Napoli, Italy
Sabine Petit
Affiliation:
Laboratoires de Pédologie et de Pétrologie de la surface, UA 721 CNRS Faculté des Sciences, 86022 Poitiers, France

Abstract

The fine silt (2–5 μm) coarse clay (0.1–2 μm) and fine clay (<0.1 μm) fractions of a Vertisol from South Italy were studied with X-ray diffraction. The most reactive fine clay (<0.1 μm) fraction was investigated in detail using a curve decomposition method analysis of X-ray diffraction diagrams, FTIR spectroscopy and chemical analysis. In the soil parent material, the fine clay fraction was dominated by low-charge smectites (beidellite and montmorillonite) whereas, high-charge beidellite was the dominant clay mineral in the fine clay from the upper soil horizons. This suggested that high-charge beidellite was produced through alteration of the preexisting low-charge smectites and was the stable clay phase in this soil environment, characterized by high pH (>8.0). After K-saturation and 25 wetting and drying cycles, the high-charge beidellite from the soil horizons lost expandability far more than the original low-charge smectites.

Type
Research Article
Copyright
Copyright © 1995, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borchardt, G., 1989. Smectites. In Minerals in Soil Environments. 2nd ed. Dixon, J. B., and Weed, S. B., eds. Madison, Wisconsin: Soil Sci. Am., 675727.Google Scholar
Bradaoui, M., and Bloom, P. R. 1990. Iron-rich high-charge beidellite in Vertisols and Mollisols of the High Chaouia region of Morocco. Soil Sci. Soc. Am. J. 54: 267274.Google Scholar
Bradaoui, M., Blomm, P. R., and Rust, R. H. 1987. Occurrence of high-charge beidellite in a Vectic Haplaquoll of northwestern Minnesota. Soil Sci. Soc. Am. J. 51: 813818.Google Scholar
Eberl, D. D., Velde, B., and McCormick, T. 1993. Synthesis of illite-smectite from smectite at Earth surface temperatures and high pH. Clay Miner, 28: 4960.Google Scholar
Grenee-Kelly, R., 1953. The identification of montmoril-lonoids in clays. J. Soil Sci. 4: 233237.Google Scholar
Halitim, A., Robert, M., and Pédro, G. 1983. Etude expérimentale de-1'épigénie calcaire des silicates en milieu confiné. Caractérisation des conditions de son développement et des modalités de sa mise en jeu. Sci. Géol. Mém. 71: 6373.Google Scholar
Howard, J. J., and Roy, D. M. 1985. Development of layer charge and kinetics of experimental smectite alteration. Clays Clay Miner. 33: 8188.Google Scholar
Jeanroy, E., 1972. Analyse totale des silicates naturels par spectrométrie d'absorption atomique. Application au sol et à ses constituants. Chim. Anal. 54: 159166.Google Scholar
Kounetsron, O., Robert, M., and Berrier, J. 1977. Nouvel aspect de la formation des smectites dans les Vertisols. C. R. Acad. Sc. Paris. 284: 733736.Google Scholar
Lanson, B., 1993. DECOMPXR, X-ray Decomposition Program. Poitiers, France: ERM (Sarl).Google Scholar
Reynolds, R. C., 1980. Interstratified clay minerals. In Crystal Structures of Clay Minerals and their X-ray Identification. Brindley, G. W., and Brown, G., eds. London: Miner. Soc., 249359.Google Scholar
Reynolds, R. C., 1992. X-ray diffraction studies of illite/smectite from rocks, < 1 μm randomly oriented powders, and < 1 μm oriented power aggregates: The absence of laboratory-induced artifacts. Clays Clay Miner. 40: 387396.Google Scholar
Roberson, H. E., and Lahann, R. W. 1981. Smectite to illite conversion rates: Effects of solution chemistry. Clays Clay Miner. 29: 129135.Google Scholar
Rossignol, J.-P., 1983. Les Vertisols du nord de l'Uruguay. Cah. ORSTOM sér. Pédol. 20: 271291.Google Scholar
Singer, A., and Stoffers, P. 1980. Clay mineral diagenesis in two East African lake sediments. Clay Miner. 15: 291308.Google Scholar
SISS (Società Italiana Scienza del Suolo). 1985. Metodi normalizzati di analisi del suolo. Edagricole. Bologna.Google Scholar
Soil Survey Staff 1992. Keys to Soil Taxonomy. 5th ed. 1994. Blacksburg, VA: Pochahontas Press.Google Scholar
Wilson, M. J., 1987. Soil smectites and related interstratified minerals: Recent developments. Proceedings of the International clay conference, Denver. Schultz, L. G., Olphen, H. van, and Mupton, F. A., eds. The Clay Minerals Society, Bloomington, Indiana, 167173.Google Scholar