Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-02T05:37:15.151Z Has data issue: false hasContentIssue false

Kaolinite and Halloysite Derived from Sequential Transformation of Pedogenic Smectite and Kaolinite-Smectite in a 120 ka Tropical Soil Chronosequence

Published online by Cambridge University Press:  01 January 2024

P. C. Ryan*
Affiliation:
Geology Department, Middlebury College, Middlebury, Vermont 05753, USA Instituto Andaluz de Ciencias de la Tierra (CSIC-Universidad de Granada), 18100, Armilla, Granada, Spain
F. J. Huertas
Affiliation:
Instituto Andaluz de Ciencias de la Tierra (CSIC-Universidad de Granada), 18100, Armilla, Granada, Spain
F. W. C. Hobbs
Affiliation:
Geology Department, Middlebury College, Middlebury, Vermont 05753, USA Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706, USA
L. N. Pincus
Affiliation:
Geology Department, Middlebury College, Middlebury, Vermont 05753, USA School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06511, USA
*
*E-mail address of corresponding author: pryan@middlebury.edu

Abstract

Tropical soils range from nutrient-depleted lateritic soils rich in halloysite or kaolinite to Inceptisols rich in interstratified kaolinite-smectite (K-S), smectite, or related 2:1 clays. Given the strong influence of clay minerals on tropical soil quality, better understanding of factors influencing their occurrence is important for modeling and managing tropical environments. This study examines the alteration of smectite to kaolinite by way of intermediate K-S and halloysite in a 120 ka moist tropical chronosequence. Iron-rich smectite (11.6 ± 2.2% Fe2O3) is the dominant mineral in Holocene soils (1–8 ka) originating from sediments rich in plagioclase and clinopyroxene. The cation exchange capacity (CEC) of smectite is 54–84 cmolc/kg and pH is 6.1 to 7.4. Within 50 ka, smectite fixes Al-hydroxy complexes into interlayers, K+ is retained preferentially over Ca2+, and 2:1 layers are stripped of tetrahedral sheets; the resulting K-S inherits flaky smectite crystal habit and the 2:1 layers — which only expand partially — include Al-hydroxy smectite and some illite-like layers. After 50 ka, the dominant mineral is K-S, the CEC is 18–28 cmolc/kg, and the pH is 5.3. Flaky Fe-kaolinite with ~10% residual smectite layers and halloysite (7.4% Fe2O3) also occur in 50 ka soil. The 120 ka soils are dominated by flaky Fe-kaolinite (<10% residual smectite layers) and halloysite (4.9% Fe2O3), and Fe-poor hexagonal kaolinite also occurs (5–10% of soil). The CEC is 11–16 cmolc/kg and the pH is 4.7–5.3.

Changes in crystal chemistry of the soil clays (decreasing Fe, Mg, Ca, and K; increasing Al) over time reflects two reaction mechanisms: (1) cell-preserved transformation of smectite layers to kaolinite layers that accompanies conversion of smectite to K-S and eventually kaolinite; this results in the formation of flaky Fe-rich kaolinites after 50 ka; and (2) dissolution of K-S followed by crystallization of halloysite. Neoformation of hexagonal kaolinite and/or halloysite with low Fe (<3% Fe2O3) follows dissolution of Fe-kaolinite or halloysite after 100 ka. This sequence is probably common in moist tropical soils and these findings may inform modeling of soil composition in tropical landscapes where tectonic, volcanic, or geomorphic activity periodically exposes unweathered parent material, producing a range of soil ages.

Type
Article
Copyright
Copyright © Clay Minerals Society 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper is published as part of a special section on the subject of ‘Clays in the Critical Zone,’ arising out of presentations made during the 2015 Clay Minerals Society-Euroclay Conference held in Edinburgh, UK.

References

Abayneh, E. Zauyah, S. Hanafi, M.M. and Rosenani, A.B., 2006 Genesis and classification of sesquioxidic soils from volcanic rocks in sub-humid tropical highlands of Ethiopia Geoderma 136 682695.CrossRefGoogle Scholar
Albertin, W., 1962 The Southern Tip of the Nicoya Peninsula Turrialba, Costa Rica Instituto Interamericano de Ciencias Agricolas.Google Scholar
Alexander, E.B. and Holowaychuk, N., 1983 Soils on terraces along the Cauca River, Colombia. II. The sand and clay fractions Soil Science Society of America Journal 47 721727.CrossRefGoogle Scholar
Amouric, M. and Olives, J., 1998 Transformation mechanisms and interstratification in conversion of smectite to kaolinite; an HRTEM study Clays and Clay Minerals 46 521527.CrossRefGoogle Scholar
Anderson, R.S. Densmore, A.L. and Ellis, M.A., 1999 The generation and degradation of marine terraces Basin Research 11 719.CrossRefGoogle Scholar
Anjos, L.H. Fernandas, M.R. Pereira, M.G. and Franzmeier, D.P., 1998 Landscape and pedogenesis of an Oxisol-Inceptisol-Ultisol sequence in Southeastern Brazil Soil Science Society of America Journal 62 16511658.CrossRefGoogle Scholar
Askenasy, P.E. Dixon, J.B. and McKee, T.R., 1973 Spheroidal halloysite in a Guatemalan soil Soil Science Society of America Proceedings 37 799803.CrossRefGoogle Scholar
Bailey, S.W., 1989 Halloysite — a critical assessment. Proceedings of the International Clay Conference, Strasbourg, France Scientifique Geologie Memoires 86 8998.Google Scholar
Balan, E. Allard, T. Boizot, B. Morin, G. and Muller, A.P., 1999 Structural Fe3+ in natural kaolinites: new insights from EPR spectra fitting at X- and Q-band frequencies Clays and Clay Minerals 47 605616.CrossRefGoogle Scholar
Balan, E. Fritsch, E. Allard, T. and Calas, G., 2007 Inheritance vs. neoformation of kaolinite during lateritic soil formation: a case study in the middle Amazon Clays and Clay Minerals 55 253259.CrossRefGoogle Scholar
Barnhisel, R.I. Bertsch, P.M., Dixon, J.B. and Weed, S.B., 1989 Chlorites and hydroxy-interlayered vermiculite and smectite Minerals in Soil Environments 2nd edition Madison, Wisconsin, USA Soil Science Society of America 729788.Google Scholar
Berthonneau, J. Grauby, O. Jeannin, C. Chaudanson, D. Joussein, E. and Baronnet, A., 2015 Native morphology of hydrated spheroidal halloysite observed by environmental transmission electron microscopy Clays and Clay Minerals 63 368377.CrossRefGoogle Scholar
Birkeland, P.W., 1999 Soils and Geomorphology Oxford, UK Oxford University Press.Google Scholar
Black, C.A., 1965 Methods of Soil Analysis: Part 2, Chemical and Microbiological Properties Aerican Society of Agronomy, ^Madison, Wisconsin USA.Google Scholar
Borden, D. and Giese, R.F., 2001 Baseline studies of the Clay Minerals Society source clays: cation exchange capacity measurements by the ammonia—electrode method Clays and Clay Minerals 49 444445.CrossRefGoogle Scholar
Bravard, S. and Righi, D., 1988 Characteristics of clays in an Oxisol—Spodosol toposequence in Amazonia (Brazil) Clay Minerals 23 279289.CrossRefGoogle Scholar
Brindley, G.W., Brown, G., 1961 Kaolin, serpentine and kindred minerals The X-ray Identification and Crystal Structures of Clay Minerals London Mineralogical Society 51131.Google Scholar
Bühmann, C. and Grubb, P.L.C., 1991 A kaolin-smectite interstratification sequence from a red and black complex Clay Minerals 26 343358.CrossRefGoogle Scholar
Calvert, C.S. Buol, S.W. and Weed, S.B., 1980 Mineralogical characteristics and transformations of a vertical-rock-saprolite-soil sequence in the North Carolina Piedmont: II. Feldspar alteration products — their transformations through the profile Soil Science Society of America Journal 44 11041112.CrossRefGoogle Scholar
Churchman, G.J. and Carr, R.M., 1975 The definition and nomenclature of halloysites Clays and Clay Minerals 23 382388.CrossRefGoogle Scholar
Churchman, G.J. and Gilkes, R.J., 1989 Recognition of intermediates in the possible transformation of halloysite to kaolinite in weathering profiles Clay Minerals 24 579590.CrossRefGoogle Scholar
Churchman, G.J. Slade, P.G. Self, P.G. and Janik, L.J., 1994 Nature of interstratified kaolin-smectites in some Australian soils Australian Journal of Soil Research 32 805822.CrossRefGoogle Scholar
Cliff, G. and Lorimer, G.W., 1975 The quantitative analysis of thin specimens Journal of Microscopy 103 203207.CrossRefGoogle Scholar
Cradwick, P.D. and Wilson, M.J., 1972 Calculated X-ray diffraction profiles for interstratified kaolinite-montmorillonite Clay Minerals 9 395405.CrossRefGoogle Scholar
Cuadros, J. and Dudek, T., 2006 FTIR investigation of the evolution of the octahedral sheet of kaolinite-smectite with progressive kaolinization Clays and Clay Minerals 54 111.CrossRefGoogle Scholar
Cuadros, J. Delgado, A. Cardenete, A. Reyes, E. and Linares, J., 1994 Kaolinite/montmorillonite resembles smectite Clays and Clay Minerals 42 643651.CrossRefGoogle Scholar
Cuadros, J. Nieto, F. and Wing-Dudek, T., 2009 Crystal-chemical changes of kaolinite-smectite mixed-layer with progressive kaolinization, as investigated by TEM-AEM and HRTEM Clays and Clay Minerals 57 742750.CrossRefGoogle Scholar
de Ligny, D. and Navrotsky, A., 1999 Energetics of kaolin polymorphs American Mineralogist 84 506516.CrossRefGoogle Scholar
de Oliveira, M.T.G. Petit, S. Grauby, O. Formoso, M.L.L. and Trescases, J.J., 1997 Characterization and distribution of halloysitic clay minerals in weathered basalts (southern Parana Basin, Brazil) Anais-Academia Brasileira de Ciencias 69 179192.Google Scholar
Dean, J.A., 1979 Lange’s Handbook of Chemistry 12th edition New York McGraw-Hill.Google Scholar
Delvaux, B. Mestdagh, M.M. Vielvoye, L. and Herbillon, A.J., 1989 XRD, IR and ESR study of experimental alteration of Al-nontronite into mixed-layer kaolinitesmectite Clay Minerals 24 617630.CrossRefGoogle Scholar
Delvaux, B. Herbillon, A.J. Dufey, J.E. and Vielvoye, L., 1990 Surface properties and clay mineralogy of hydrated halloysitic soil clays. I: Existence of interlayer K+ specific sites Clay Minerals 25 129139.CrossRefGoogle Scholar
Delvaux, B. Herbillon, A.J. Vielvoye, L. and Mestdagh, M.M., 1990 Surface properties of clay mineralogy of hydrated halloysitic soil clays. II: Evidence for the presence of halloysite/smectite (H/Sm) mixed-layer clays Clay Minerals 25 141160.CrossRefGoogle Scholar
Delvaux, B. Tessier, D. Herbillon, A.J. and Burtin, G., 1992 Morphology, texture, and microstructure of halloysitic soil clays as related to weathering and exchangeable cation Clays and Clay Minerals 40 446–45.CrossRefGoogle Scholar
Delvaux, B. Herbillon, A.J., Churchman, G.J. Fitzpatrick, R.W. and Eggleton, R.A., 1995 Pathways of mixed-layer kaolin-smectite formation in soils Clays Controlling the Environment 457461.Google Scholar
Dixon, J.B. and Jackson, M.L., 1962 Properties of intergradient chlorite-expansible layer silicates of soils Soil Science Society of America Proceedings 26 358362.CrossRefGoogle Scholar
Dohrmann, R., 2006 Problems in CEC determination of calcareous clayey sediments using the ammonium acetate method Journal of Plant Nutrition and Soil Science 169 330334.CrossRefGoogle Scholar
Dudek, T. Cuadros, J. and Fiore, S., 2006 Interstratified kaolinite-smectite: nature of the layers and mechanism of smectite kaolinization American Mineralogist 91 159170.CrossRefGoogle Scholar
Dudek, T. Cuadros, J. and Huertas, F.J., 2007 Structure of mixed-layer kaolinite-smectite and smectite-to-kaolinite transformation mechanism from synthesis experiments American Mineralogist 92 179192.CrossRefGoogle Scholar
Eswaran, H. and De Coninck, F., 1971 Clay mineral formations and transformations in basaltic soils in tropical environments Pedologie 21 181210.Google Scholar
Eswaran, H. and Wong, C.B., 1978 A study of a deep weathering profile on granite in peninsular Malaysia: III. Alteration of feldspars Soil Science Society of America Journal 42 154158.CrossRefGoogle Scholar
Eswaran, H. Beinroth, F.H. Kimble, J. Cook, T., Lal, R. and Sanchez, P.A., 1992 Soil diversity in the tropics: implications for agricultural development Myths and Science of Soils of the Tropics Madison, Wisconsin, USA Soil Science Society of America 116.Google Scholar
Etame, J. Gerard, M. Suh, C.E. and Bilong, P., 2009 Halloysite neoformation during the weathering of nephelinitic rocks under humid tropical conditions at Mt Etinde, Cameroon Geoderma 154 5968.CrossRefGoogle Scholar
Fisher, G.B. and Ryan, P.C., 2006 The smectite to disordered kaolinite transition in a tropical soil chronosequence, Pacific Coast, Costa Rica Clays and Clay Minerals 54 571586.CrossRefGoogle Scholar
Fritz, B. Clement, A. Amal, Y. and Noguera, C., 2009 Simulation of nucleation and growth of simple clay minerals in weathering processes: The NANOKIN code Geochimica et Cosmochimica Acta 73 13401358.CrossRefGoogle Scholar
Gaudin, A., Petit, S., Rose, J., Martin, F., Decarreau, A., Noack, Y., and Borschneck, D. (2004) The accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia). II. Spectroscopic (IR and EXAFS) approaches. Clay Minerals, 39, 453467.CrossRefGoogle Scholar
Geldmacher, J. Hoernle, K. van den Bogaard, P. Hauff, F. and Klügel, A., 2008 Age and geochemistry of the Central American forearc basement (DSDP Leg 67 and 84): Insights into Mesozoic arc volcanism and seamount accretion on the fringe of the Caribbean LIP Journal of Petrology 49 17811815.CrossRefGoogle Scholar
Gloaguen, T.V. Forti, M.C. Lucas, Y. Montes, C.R. Gonçalves, R.A.B. Herpin, U. and Melfi, A.J., 2007 Soil solution chemistry of a Brazilian Oxisol irrigated with treated sewage effluent Agricultral Water Management 88 119131.CrossRefGoogle Scholar
Gracheva, R.G. Targulian, V.O. and Zamotaev, I.V., 2001 Time-dependent factors of soil and weathering mantle diversity in the humid tropics and subtropics: a concept of soil self-development and denudation Quaternary International 78 310.CrossRefGoogle Scholar
Greene, A.M., Seager, R., and Broecker, W.S. (2002) Tropical snowline depression at the Last Glacial Maximum: comparison with proxy records using a single-cell tropical climate model. Journal of Geophysical Research, 107,.CrossRefGoogle Scholar
Grim, R.E., 1968 Clay Mineralogy New York McGraw-Hill.Google Scholar
Hart, R.D. Gilkes, R.J. Siradz, S. and Singh, B., 2002 The nature of soil kaolins from Indonesia and western Australia Clays and Clay Minerals 50 198207.CrossRefGoogle Scholar
Harward, M.E. Carstea, D.D. and Sayegh, A.H., 1969 Properties of vermiculites and smectites: expansion and collapse Clays and Clay Minerals 16 437447.CrossRefGoogle Scholar
He, Y. Li, D.C. Velde, B. Yang, Y.F. Huang, C.M. Gong, Z.T. and Zhang, G.L., 2008 Clay minerals in a soil chronosequence derived from basalt on Hainan Island, China and its implication for pedogenesis Geoderma 148 206212.CrossRefGoogle Scholar
Herbillon, A.J. Mestdagh, M.M. Vielvoye, L. and Derouane, E.G., 1976 Iron in kaolinite with special reference to kaolinite from tropical soils Clay Minerals 11 201220.CrossRefGoogle Scholar
Herbillon, A.J. Frankart, R. and Vielvoye, L., 1981 An occurrence of interstratified kaolinite-smectite minerals in a red-black soil toposequence Clay Minerals 16 195201.CrossRefGoogle Scholar
Hillier, S. and Ryan, P.C., 2002 Identification of halloysite (7 Å) by ethylene glycol solvation: the ‘MacEwan effect.’ Clay Minerals 37 487496.CrossRefGoogle Scholar
Hobbs, F.W.C., 2012.Smectite-to-disordered kaolinite transitions as a function of age in the Nicoya PeninsulaGoogle Scholar
Hope, G.S. Hartemink, A.E., Marshall, A.J. and Beehler, B.M., 2007 Soils of Papua The Ecology of Papua Singapore Periplus Editions 165176.Google Scholar
Hughes, J.C., 1980 Crystallinity of kaolin minerals and their weathering sequence in some soils from Nigeria, Brazil, and Colombia Geoderma 24 317325.CrossRefGoogle Scholar
Hughes, J.C. Gilkes, R.J. and Hart, R.D., 2009 Intercalation of reference and soil kaolins in relation to physico-chemical and structural properties Applied Clay Science 45 2535.CrossRefGoogle Scholar
Hughes, R.E. Moore, D.M. Reynolds, R.C. Jr, Murray, H.H., 1993 The nature, detection and occurrence, and origin of kaolinite/smectite Kaolin Genesis and Utilization Boulder, Colorado, USA The Clay Minerals Society 291323.Google Scholar
Instituto Meteorológico Nacional (IMN) de Costa Rica, Atlas Climatológico. []. Accessed 21 April 2016.Google Scholar
Iriarte, I. Petit, S. Huertas, F.J. Fiore, S. Grauby, O. Decarreau, A. and Linares, J., 2005 Synthesis of kaolinite with a high level of Fe3+ for Al substitution Clays and Clay Minerals 53 110.CrossRefGoogle Scholar
Jiang, J. Xu, R. and Zhao, A., 2011 Surface chemical properties and pedogenesis of tropical soils derived from basalts with different ages in Hainan, China Catena 87 334340.CrossRefGoogle Scholar
Joussein, E. Petit, S. Churchman, J. Theng, B. Righi, D. and Delvaux, B., 2005 Halloysite clay minerals — a review Clay Minerals 40 383426.CrossRefGoogle Scholar
Kantor, W. and Schwertmann, U., 1974 Mineralogy and genesis of clays in red-black toposequences in Kenya Journal of Soil Science 25 6778.CrossRefGoogle Scholar
Kautz, C.Q. and Ryan, P.C., 2003 The 10 Å to 7 Å halloysite transition in a tropical soil sequence, Costa Rica Clays and Clay Minerals 51 252263.CrossRefGoogle Scholar
Karathanasis, A.D. and Hajek, B.F., 1984 Evaluation of Al-smectite stability of equilibria in naturally acid soils Soil Science Society of America Journal 48 413417.CrossRefGoogle Scholar
Keller, W.D., 1977 Scan electron micrographs of kaolins collected from diverse environments of origin — IV. Georgia kaolin and kaolinizing source rocks Clays and Clay Minerals 25 311345.CrossRefGoogle Scholar
Korning, J. Thomsen, K. Dalsgaard, K. and Nørnberg, P., 1994 Characters of three udults and their relevance to the composition and structure of virgin rain forest of Amazonian Ecuador Geoderma 63 145164.CrossRefGoogle Scholar
Kunze, G.W. and Bradley, W.F., 1954 Occurrence of a tabular halloysite in a Texas soil Clays and Clay Minerals 12 523527.CrossRefGoogle Scholar
La Iglesia, A. and Galán, E., 1975 Halloysite-kaolinite transformation at room temperature Clays and Clay Minerals 23 109113.CrossRefGoogle Scholar
Lal, R., 1995 Sustainable Management of Soil Resources in the Humid Tropics Tokyo United Nations University Press.Google Scholar
Lundberg, N., 1991 Detrital record of the early Central American magmatic arc: petrography of intraoceanic forearc sandstones, Nicoya Peninsula, Costa Rica Geological Society of America Bulletin 103 905915.2.3.CO;2>CrossRefGoogle Scholar
Ma, C. and Eggleton, R.A., 1999 Cation exchange capacity of kaolinite Clays and Clay Minerals 47 174180.Google Scholar
MacEwan, D.M.C., 1948 Complexes of clays with organic compounds I. Complex formation between montmorillonite and halloysite and certain organic liquids. Transactions of the Faraday Society 44 349367.Google Scholar
Madeira, M. Auxtero, E. and Sousa, E., 2003 Cation and anion exchange properties of Andisols from the Azores, Portugal, as determined by the compulsive exchange and the ammonium acetate method Geoderma 117 225241.CrossRefGoogle Scholar
Malla, P.B., Dixon, J.B. and Schulze, D.G., 2002 Vermiculites Soil Mineralogy with Environmental Applications Madison, Wisconsin, USA Soil Science Society of America 501529.Google Scholar
Marshall, J.S. and Anderson, R.S., 1995 Quaternary uplift and seismic cycle deformation, Nicoya Peninsula, Costa Rica Geological Society of America Bulletin 107 463473.2.3.CO;2>CrossRefGoogle Scholar
Marshall, J.S., LaFromboise, E.J., Gardner, T.W., and Protti, M. (2007) Segmented forearc deformation along the Nicoya Peninsula seismic gap, Costa Rica. Eos, Transactions of the American Geophysical Union, 88, Fall Meeting Supplement, Abs T53A-1121.Google Scholar
Marshall, J.S. Morrish, S. LaFromboise, E. Butcher, A. Ritzinger, B. Wellington, K. Barnhart, A. Kinder, K. Utick, J. Protti, M. Gardner, T. Fisher, D. Simila, G. Spotila, J. Owen, L. Murari, M. and Cupper, M., 2012 Morphotectonic segmentation along the Nicoya Peninsula seismic gap, Costa Rica, Central America Seismological Research Letters 83 374.Google Scholar
Mata, R., 1991 Los ordenes de suelos de Costa Rica. Taller de Erosión Costa Rica Memoria, Heredia, MADE, UNA.Google Scholar
McBride, M.B., 1976 Origin and position of exchange sites in kaolinite: As ESR study Clays and Clay Minerals 24 8892.CrossRefGoogle Scholar
Meunier, A., 2007 Soil hydroxy-interlayered minerals: A reinterpretation of their crystallochemical properties Clays and Clay Minerals 55 380388.CrossRefGoogle Scholar
Minasny, B. and Hartemink, A.E., 2011 Predicting soil properties in the tropics Earth-Science Reviews 106 5262.CrossRefGoogle Scholar
Moore, D.M. Reynolds, R.C. Jr, 1997 Identification of mixed-layer minerals X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press 261297.Google Scholar
Nahon, D.B. and Colin, F., 1982 Chemical weathering of orthopyroxenes under lateritic conditions American Journal of Science 282 12321243.CrossRefGoogle Scholar
Navarrete, I.A. Tsutsuki, K. Asio, V.B. and Kondo, R., 2009 Characteristics and formation of rain forest soils derived from late Quaternary basaltic rocks in Leyte, Philippines Environmental Geology 58 12571268.CrossRefGoogle Scholar
Ndayiragije, S. and Delvaux, B., 2003 Coexistence of allophone, gibbsite, kaolinite and hydroxy-Al-interlayered 2:1 clay minerals in a perudic Andosol Geoderma 117 203214.CrossRefGoogle Scholar
Newman, A.C.D. Brown, G., Newman, A.C.D., 1987 The chemical constitution of clays Chemistry of Clays and Clay Minerals Harlow, Essex, UK Mineralogical Society, Longman Technical and Scientific 1128.Google Scholar
Nieuwenhuyse, A. Verburg, P.S.J. and Jongmans, A.G., 2000 Mineralogy of a soil chronosequence on andesitic lava in humid tropical Costa Rica Geoderma 98 6182.CrossRefGoogle Scholar
Noro, H., 1986 Hexagonal platy halloysite in an altered tuff bed, Komaki city, Aichi prefecture, central Japan Clay Minerals 21 401415.CrossRefGoogle Scholar
Parham, W.E., 1969 Formation of halloysite from feldspar: low temperature, artificial weathering versus natural weathering Clays and Clay Minerals 17 1322.CrossRefGoogle Scholar
Patino, L.C. Alvarado, G.E. and Vogel, T.A., 2004 Early arc magmatism: geochemical characteristics of volcanic clasts from Punta Sámara, Costa Rica Revista Geológica de América Central 30 117125.Google Scholar
Petit, S. and Decarreau, A., 1990 Hydrothermal (200°C) synthesis and crystal chemistry of iron-rich kaolinites Clay Minerals 25 181196.CrossRefGoogle Scholar
Pincus, L., 2014 Variations in cation exchange capacity of clay soils across a tropical landscape Middlebury, Vermont Middlebury College.Google Scholar
Piperno, D.R. and Jones, J.G., 2003 Paleoecological and archaeological implications of a Late Pleistocene/Early Holocene record of vegetation and climate from the Pacific coastal plain of Panama Quaternary Research 59 7987.CrossRefGoogle Scholar
Pochet, G. Van der Velde, M. Vanclooster, M. and Delvaux, B., 2007 Hydric properties of high charge, halloysitic clay soils from the tropical South Pacific region Geoderma 138 96109.CrossRefGoogle Scholar
Reheis, M.C. (1987) Gypsic soils on the Kane alluvial fans, Big Horn County, Wyoming. U.S. Geological Survey Bulletin, 1590-C, 39 pp.Google Scholar
Reynolds, R.C. III, 2012.NEWMOD II for Windows ©Google Scholar
Righi, D. Terribile, F. and Petit, S., 1998 Pedogenic formation of high-charge beidellite in a Vertisol of Sardinia (Italy) Clays and Clay Minerals 46 167177.CrossRefGoogle Scholar
Righi, D. Terribile, F. and Petit, S., 1999 Pedogenic formation of kaolinite-smectite mixed layers in a soil toposequence developed from basaltic parent material in Sardinia (Italy) Clays and Clay Minerals 47 505514.CrossRefGoogle Scholar
Robertson, I.D.M. and Eggleton, R.A., 1991 Weathering of granitic muscovite to kaolinite and halloysite and of plagioclase-derived kaolinite to halloysite Clays and Clay Minerals 39 113126.CrossRefGoogle Scholar
Russell, J.D. Fraser, A.R., Wilson, M.J., 1994 Infrared methods Clay Mineralogy: Spectroscopic and Chemical Determinative Methods London Chapman & Hall 1167.CrossRefGoogle Scholar
Ryan, P.C. and Huertas, F.J., 2009 The temporal evolution of pedogenic Fe-smectite to Fe-kaolin via interstratified kaolin-smectite in a moist tropical soil chronosequence Geoderma 151 115.CrossRefGoogle Scholar
Ryan, P.C. and Huertas, F.J., 2013 Reaction pathways of clay minerals in tropical soils: insights from kaolinite-smectite synthesis experiments Clays and Clay Minerals 61 303318.CrossRefGoogle Scholar
Sak, P.B. Fisher, D.M. Gardner, T.W. Marshall, J.S. and LaFemina, P.C., 2009 Rough crust subduction, fore arc kinematics, and Quaternary uplift rates, Costa Rican segment of the Middle American Trench Geological Society of America Bulletin 121 9921012.CrossRefGoogle Scholar
Sawhney, B.L., 1972 Selective sorption and fixation of cations by clay minerals: A review Clays and Clay Minerals 20 93100.CrossRefGoogle Scholar
Schaefer, CEGR Fabris, J.D. and Ker, J.C., 1988 Minerals in the clay fraction of Brazilian Latosols (Oxisols): a review Clay Minerals 43 137154.CrossRefGoogle Scholar
Schulze, D.G., 2005 Clay Minerals Encyclopedia of Soils in the Environment 1 246254.CrossRefGoogle Scholar
Selvaradjou, S.-K. Montanarella, L. Spaargaren, O. and Dent, D., 2005 European Digital Archive of Soil Maps (EuDASM) - Soil Maps of Latin America and Carribean Islands Luxembourg Office of the Official Publications of the European Communities.Google Scholar
Shainberg, I. Alperovitch, N.I. and Keren, R., 1987 Charge density and Na-K-Ca exchange on smectites Clays and Clay Minerals 35 6873.CrossRefGoogle Scholar
Silva, A.C. Bispo, F.H.A. de Souza, S. Ardisson, J.D. Viana, A.J.S. Pereira, M.C. Costa, F.R. Murad, E. and Fabris, J.D., 2013 Iron mineralogy of a grey Oxisol from the Jequitinhonha River Basin, Minas Gerais, Brazil Clay Minerals 48 713723.CrossRefGoogle Scholar
Singh, B. and Gilkes, R.J., 1992 Properties of soil kaolinites from south-western Australia Journal of Soil Science 43 645667.CrossRefGoogle Scholar
Singh, B. and Gilkes, R.J., 1993 Weathering of spodumene to smectite in a lateritic environment Clays and Clay Minerals 41 624630.CrossRefGoogle Scholar
Soma, M. Churchman, G.J. and Theng, B.K.G., 1992 X-ray photoelectron spectroscopic analysis of halloysites with different composition and particle morphology Clay Minerals 27 413421.CrossRefGoogle Scholar
Środoń, J., 1999 Nature of mixed-layer clays and mechanisms of their formation and alteration Annual Review of Earth and Planetary Sciences 27 1953.CrossRefGoogle Scholar
Stevens, P.R. and Walker, T.W., 1970 The chronosequence concept and soil formation The Quarterly Review of Biology 45 333350.CrossRefGoogle Scholar
Stewart, B.W. Capo, R.C. and Chadwick, O.A., 2001 Effects of rainfall on weathering rate, base cation provenance, and Sr isotope composition of Hawaiian soils Geochimica et Cosmochimica Acta 65 10871099.CrossRefGoogle Scholar
Sudo, T. and Yotsumoto, H., 1977 The formation of halloysite tubes from spherulitic halloysite Clays and Clay Minerals 25 155159.CrossRefGoogle Scholar
Szott, L.T. Palm, C.A. and Sanchez, P.A., 1991 Agroforestry in acid soils in the humid tropics Advances in Agronomy 45 275301.CrossRefGoogle Scholar
Szymanski, D.W. Patino, L.C. Vogel, T.A. and Alvarado, G.E., 2013 Evaluating complex magma mixing via polytopic vector analysis (PVA) in the Papagayo Tuff, northern Costa Rica: Processes that form continental crust Geosciences 3 585615.CrossRefGoogle Scholar
Tardy, Y. and Roquin, C., 1992 Geochemistry and evolution of lateritic landscapes Developments in Earth Surface Processes Amsterdam Elsevier 407443.Google Scholar
Thomas, G.W., Sparks, D.L. Page, A.L. Helmke, P.A. Loeppert, R.H. Soltanpour, P.N. Tabatabai, M.A. Johnston, C.T. and Sumner, M.E., 1996 Soil pH and soil acidity Methods of Soil Analysis, Part 3 — Chemical Methods Madison, Wisconsin, USA Soil Science Society of America 475490.Google Scholar
Tomura, S. Shibasaki, Y. Mizuta, H. and Kitamura, M., 1985 Growth conditions and genesis of spherical and platy kaolinite Clays and Clay Minerals 33 200206.CrossRefGoogle Scholar
Tsuzuki, Y. and Kawabe, I., 1983 Polymorphic transformations of kaolin minerals in aqueous solutions Geochimica et Cosmochimica Acta 47 5966.CrossRefGoogle Scholar
Uehara, G., Rice, T. Eswaran, H. Stewart, B.A. and Ahrens, R., 2003 Developments in soil chemistry and soil classification Soil Classification: A Global Desk Reference Boca Raton, Florida, USA CRC Press 6773.Google Scholar
Vitousek, P.M. Sanford, R.L. Jr, 1986 Nutrient cycling in moist tropical forest Annual Review of Ecological Systematics 17 137167.CrossRefGoogle Scholar
Wada, K. and Kakuto, Y., 1983 Intergradient vermiculitekaolin mineral in a Korean Ultisol Clays and Clay Minerals 31 183190.CrossRefGoogle Scholar
Wada, S. and Mizota, C., 1982 Iron-rich halloysite (10 Å) with crumpled lamellar morphology from Hokkaido, Japan Clays and Clay Minerals 30 315317.CrossRefGoogle Scholar
Watanabe, T. Sawada, Y. Russell, J.D. McHardy, W.J. and Wilson, M.J., 1992 The conversion of montmorillonite to interstratified halloysite-smectite by weathering in the Omi acid clay deposit, Japan Clay Minerals 27 159173.CrossRefGoogle Scholar
Wilson, M.J., 1999 The origin and formation of clay minerals in soils; past, present and future perspectives Clay Minerals 34 725.CrossRefGoogle Scholar
Yerima, B.P.K. Calhoun, F.G. Senkayi, A.L. and Dixon, J.B., 1985 Occurrence of interstratified kaolinite-smectite in El Salvador Vertisols Soil Science Society of America Journal 49 462466.CrossRefGoogle Scholar
Ziegler, K. Hsieh, J.C.C. Chadwick, O.A. Kelly, E.F. Hendricks, D.M. and Savin, S.M., 2003 Halloysite as a kinetically controlled end product of arid-zone basalt weathering Chemical Geology 202 461478.CrossRefGoogle Scholar