Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T09:24:08.277Z Has data issue: false hasContentIssue false

The Interaction between Surfactants and Montmorillonite and its Influence on the Properties of Organo-Montmorillonite in Oil-Based Drilling FluIDS

Published online by Cambridge University Press:  01 January 2024

Guanzheng Zhuang
Affiliation:
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, No. 29, Xueyuan Road, Haidian District, Beijing 100083 People’s Republic of China
Zepeng Zhang*
Affiliation:
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, No. 29, Xueyuan Road, Haidian District, Beijing 100083 People’s Republic of China
Shanmao Peng
Affiliation:
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, No. 29, Xueyuan Road, Haidian District, Beijing 100083 People’s Republic of China
Jiahua Gao
Affiliation:
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, No. 29, Xueyuan Road, Haidian District, Beijing 100083 People’s Republic of China
Francisco A. R. Pereira
Affiliation:
Laboratoire d’Archéologie Moléculaire et Structurale (LAMS), Sorbonne Université, CNRS UMR8220, case courrier 225, UPMC 4 Pl. Jussieu, 75005, Paris Cedex 05, France Chemistry Department, Science and Technology Center, Universidade Estadual da Paraíba, Campina Grande, Paraíba, Brazil
Maguy Jaber*
Affiliation:
Laboratoire d’Archéologie Moléculaire et Structurale (LAMS), Sorbonne Université, CNRS UMR8220, case courrier 225, UPMC 4 Pl. Jussieu, 75005, Paris Cedex 05, France
*
*E-mail address of corresponding author: unite508@163.com and maguy.jaber@upmc.fr
*E-mail address of corresponding author: unite508@163.com and maguy.jaber@upmc.fr

Abstract

The increasing demands for oil and gas and associated difficult drilling operations require oil-based drilling fluids that possess excellent rheological properties and thermal stability. The objective of the present work was to investigate the rheological properties and thermal stability of organo-montmorillonite (OMnt) modified with various surfactants and under various loading levels in oil-based drilling fluids, as revealed by the interaction between organic surfactants and montmorillonite. The influence of the structural arrangement of surfactants on the thermal stability of organo-montmorillonite (OMnt) in oil-based drilling fluids was also addressed. OMnt samples were prepared in aqueous solution using surfactants possessing either a single long alkyl chain two long alkyl chains. OMnt samples were characterized by X-ray diffraction, high-resolution transmission electron microscopy, thermal analysis, and X-ray photoelectron spectroscopy. Organic surfactants interacted with montmorillonite by electrostatic attraction. The arrangements of organic surfactants depended on the number of long alkyl chains and the geometrical shape of organic cations. In addition to the thermal stability of surfactants, intermolecular interaction also improved the thermal stability of OMnt/oil fluids. A tight paraffin-type bilayer arrangement contributed to the excellent rheological properties and thermal stability of OMnt/oil fluids. The deterioration of rheological properties of OMnt/oil fluids at temperatures up to 200°C was due mainly to the release of interlayer surfactants into the oil.

Type
Original Paper
Copyright
Copyright © Clay Minerals Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergaya, F., Jaber, M., & Lambert, J. F. (2012). Clays and Clay Minerals as Layered Nanofillers for (Bio)polymers (pp. 4175). London: Springer.Google Scholar
Bertuoli, P. T., Piazza, D., Scienza, L. C., & Zattera, A. J. (2014). Preparation and characterization of montmorillonite modified with 3-aminopropyltriethoxysilane. Applied Clay Science, 87, 4651.CrossRefGoogle Scholar
Bowen, J. P., Pathiaseril, A., Profeta, S. Jr., & Allinger, N. L. (1987). New molecular mechanics (MM2) parameters for ketones and aldehydes. The Journal of Organic Chemistry, 52(23), 51625166.CrossRefGoogle Scholar
Brigatti, M. F., Galán, E., & Theng, B. K. G. (2013). Structures and mineralogy of clay minerals. In Bergaya, F. & Lagaly, G. (Eds.), Developments in Clay Science (Vol. 5, pp. 2181). Netherlands: Elesvier.Google Scholar
Caenn, R. & Chillingar, G. V. (1996). Drilling fluids: State of the art. Journal of Petroleum Science and Engineering, 14, 221230.CrossRefGoogle Scholar
Caenn, R., Darley, H. C., & Gray, G. R. (2011). Composition and properties of drilling and completion fluids. Houston: Gulf professional publishing.Google Scholar
Chen, D., Zhu, J. X., Yuan, P., & Yang, S. J. (2008). Preparation and characterization of anion-cation surfactants modified montmorillonite. Journal of Thermal Analysis and Calorimetry 94, 841848.CrossRefGoogle Scholar
Dino, D., & Thompson, J. (2002). U.S. patent no. 6,462,096. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
Favre, H., & Lagaly, G. (1991). Organo-bentonites with quaternary alkylammonium ions. Clay Minerals, 26, 1932.CrossRefGoogle Scholar
Frantz, E. B. (2014). U.S. patent no. 0,011,712. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
Greene-Kelly, R. (1957). The montmorillonite minerals. In Mackenzie, R. C. (Ed.), The Differential Thermal Investigation of Clays (pp. 140164). London: Mineral Society.Google Scholar
Guégan, R., Giovanela, M., Warmont, F., & Motelica-Heino, M. (2015). Nonionic organoclay: A ‘swiss army knife’ for the adsorption of organic micro-pollutants? Journal of Colloid and Interface Science, 437, 7179.CrossRefGoogle ScholarPubMed
Gunawan, N. S., Indraswati, N., Ju, Y. H., Soetaredjo, F. E., Ayucitra, A., & Ismadji, S. (2010). Bentonites modified with anionic and cationic surfactants for bleaching of crude palm oil. Applied Clay Science, 47, 462464.CrossRefGoogle Scholar
He, H., Ding, Z., Zhu, J., Yuan, P., Xi, Y., Yang, D., & Frost, R. L. (2005). Thermal characterization of surfactant-modified montmorillonites. Clays and Clay Minerals, 53, s319.CrossRefGoogle Scholar
He, H., Zhou, Q., Frost, R. L., Wood, B. J., Duong, L.V., & Kloprogge, J. T. (2007). An X-ray photoelectron spectroscopy study of HDTMAB distribution within organoclays. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 66, 11801188.CrossRefGoogle ScholarPubMed
He, H., Ma, Y., Zhu, J., Yuan, P., & Qing, Y. (2010). Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Applied Clay Science, 48, 6772.CrossRefGoogle Scholar
Hedley, C. B., Yuan, G., & Theng, B. K. G. (2007). Thermal analysis of montmorillonites modified with quaternary phosphonium and ammonium surfactants. Applied Clay Science, 35, 180188.CrossRefGoogle Scholar
Hermoso, J., Martinez-Boza, F., & Gallegos, C. (2014). Influence of viscosity modifier nature and concentration on the viscous flow behavior of oil-based drilling fluids at high pressure. Applied Clay Science, 87, 1421.CrossRefGoogle Scholar
Hermoso, J., Martinez-Boza, F., & Gallegos, C. (2015). Influence of aqueous phase volume fraction, organoclay concentration and pressure on invert-emulsion oil muds rheology. Journal of Industrial and Engineering Chemistry, 22, 341349.CrossRefGoogle Scholar
Hermoso, J., Martínez-Boza, F. J., & Gallegos, C. (2017). Organoclay influence on high pressure-high temperature volumetric properties of oil-based drilling fluids. Journal of Petroleum Science and Engineering, 151, 1323.CrossRefGoogle Scholar
Jaber, M., Miehé-Brendlé, J., & Dred, R. L. (2002). Mercaptopropyl Al-Mg phyllosilicate: Synthesis and characterization by XRD, IR, and NMR. Chemistry Letters, 80, 954955.CrossRefGoogle Scholar
Jaber, M., Georgelin, T., Bazzi, H., Costatorro, F., & Clodic, G. (2014). Selectivities in adsorption and peptidic condensation in the (arginine and glutamic acid)/montmorillonite clay system. Journal of Physical Chemistry C, 118, 2544725455.CrossRefGoogle Scholar
Khodja, M., Canselier, J. P., Bergaya, F., Fourar, K., Khodja, M., Cohaut, N., & Benmounah, A. (2010). Shale problems and water-based drilling fluid optimisation in the hassi messaoud algerian oil field. Applied Clay Science, 49, 383393.CrossRefGoogle Scholar
Kogure, T. (2013). Electron microscopy. In Bergaya, F. & Lagaly, G. (Eds.), Developments in Clay Science (pp. 275317, Vol. 5). Netherlands: Elsevier.Google Scholar
Lagaly, G. (1976). Kink-block and gauche-block structures of bimolecular films. Angewandte Chemie International Edition, 15, 575586.CrossRefGoogle Scholar
Lagaly, G. (1981). Characterization of clays by organic compounds. Clay Minerals, 16(1), 121.CrossRefGoogle Scholar
Lagaly, G. (1986). Interaction of alkylamines with different types of layered compounds. Solid State Ionics, 22, 4351.CrossRefGoogle Scholar
Lagaly, G., Ogawa, M., & Dékány, I. (2013) Clay mineral–organic interactions. In Bergaya, F., Theng, B.K.G., and Lagaly, G. (Eds.) Developments in Clay Science, (pp. 435505, Vol. 5). Amsterdam; Elsevier.Google Scholar
Lee, S.M. and Tiwari, D. (2012) Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview. Applied Clay Science, 59–60, 84102.CrossRefGoogle Scholar
Paiva, L. B. D., Morales, A. R., & Díaz, F. R. V. (2008). Organoclays: Properties, preparation and applications. Applied Clay Science, 42, 824.CrossRefGoogle Scholar
Ratkievicius, L. A., Da Cunha Filho, F. J. V., Neto, E. L. D. B., & Santanna, V. C. (2017). Modification of bentonite clay by a cationic surfactant to be used as a viscosity enhancer in vegetable-oil-based drilling fluid. Applied Clay Science, 135, 307312.CrossRefGoogle Scholar
Sarier, N., Onder, E., & Ersoy, S. (2010). The modification of Namontmorillonite by salts of fatty acids: An easy intercalation process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 371, 4049.CrossRefGoogle Scholar
Schampera, B., Solc, R., Woche, S. K., Mikutta, R., Dultz, S., Guggenberger, G., & Tunega, D. (2015). Surface structure of organoclays as examined by X-ray photoelectron spectroscopy and molecular dynamics simulations. Clay Minerals, 50, 353367.CrossRefGoogle Scholar
Shen, Y. H. (2001). Preparations of organobentonite using nonionic surfactants. Chemosphere, 44, 989995.CrossRefGoogle ScholarPubMed
Vaia, R. A., Teukolsky, R. K., & Giannelis, E. P. (1994). Interlayer structure and molecular environment of alkylammonium layered silicates. Chemistry of Materials, 6, 10171022.CrossRefGoogle Scholar
Wu, S., Zhang, Z., Wang, Y., Liao, L., & Zhang, J. (2014). Influence of montmorillonites exchange capacity on the basal spacing of cation–anion organo-montmorillonites. Materials Research Bulletin, 59, 5964.Google Scholar
Zhang, Z., Liao, L., & Xia, Z. (2010). Ultrasound-assisted preparation and characterization of anionic surfactant modified montmorillonites. Applied Clay Science, 50, 576581.CrossRefGoogle Scholar
Zhang, Z., Zhang, J., Liao, L., & Xia, Z. (2013). Synergistic effect of cationic and anionic surfactants for the modification of Ca-montmorillonite. Materials Research Bulletin, 48, 18111816.CrossRefGoogle Scholar
Zhu, J., Qing, Y., Wang, T., Zhu, R., Wei, J., Tao, Q., Yuan, P., & He, H. (2011). Preparation and characterization of zwitterionic surfactant-modified montmorillonites. Journal of Colloid and Interface Science, 360, 386392.CrossRefGoogle ScholarPubMed
Zhuang, G., Zhang, Z., Guo, J., Liao, L., & Zhao, J. (2015). A new ball milling method to produce organo-montmorillonite from anionic and nonionic surfactants. Applied Clay Science, 104, 1826.CrossRefGoogle Scholar
Zhuang, G., Zhang, Z., Sun, J., & Liao, L. (2016). The structure and rheology of organo-montmorillonite in oil-based system aged under different temperatures. Applied Clay Science, 124, 2130.CrossRefGoogle Scholar
Zhuang, G., Zhang, H., Wu, H., Zhang, Z., & Liao, L. (2017a). Influence of the surfactants' nature on the structure and rheology of organo-montmorillonite in oil-based drilling fluids. Applied Clay Science, 135, 244252.CrossRefGoogle Scholar
Zhuang, G., Zhang, Z., Gao, J., Zhang, X., & Liao, L. (2017b). Influences of surfactants on the structures and properties of organo-palygorskite in oil-based drilling fluids. Microporous and Mesoporous Materials, 244, 3746.CrossRefGoogle Scholar
Zhuang, G., Zhang, Z., Jaber, M., Gao, J., & Peng, S. (2017c). Comparative study on the structures and properties of organo-montmorillonite and organo-palygorskite in oil-based drilling fluids. Journal of Industrial and Engineering Chemistry, 56, 248257.CrossRefGoogle Scholar
Zhuang, G., Gao, J., Chen, H., & Zhang, Z. (2018). A new one-step method for physical purification and organic modification of sepiolite. Applied Clay Science, 153, 18.CrossRefGoogle Scholar