Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-01T16:33:33.131Z Has data issue: false hasContentIssue false

The Interaction Between Bentonite and Water Vapor. I: Examination of Physical and Chemical Properties

Published online by Cambridge University Press:  01 January 2024

Michel Heuser*
Affiliation:
Clay and Interface Mineralogy, RWTH Aachen University, Bunsenstrasse 8, 52072, Aachen, Germany
Christian Weber
Affiliation:
Clay and Interface Mineralogy, RWTH Aachen University, Bunsenstrasse 8, 52072, Aachen, Germany
Helge Stanjek
Affiliation:
Clay and Interface Mineralogy, RWTH Aachen University, Bunsenstrasse 8, 52072, Aachen, Germany
Hong Chen
Affiliation:
Department of Materials Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, B 2400 Mol, Belgium
Guntram Jordan
Affiliation:
Department for Geo- and Environmental Sciences, Ludwig-Maximilians-Universität München (LMU), Theresienstrasse 41, 80333 Munich, Germany
Wolfgang W. Schmahl
Affiliation:
Department for Geo- and Environmental Sciences, Ludwig-Maximilians-Universität München (LMU), Theresienstrasse 41, 80333 Munich, Germany
Carsten Natzeck
Affiliation:
Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
*
*E-mail address of corresponding author: michel.heuser@cim.rwth-aachen.de

Abstract

The influence of water vapor on bentonites or smectites is of interest in many different fields of applied mineralogy such as nuclear-waste sealing or casting in the foundry industry. The water vapor affects the smectite surface and perhaps its structure probably leading to mostly unfavorable changes in its properties. In this first part of the present study, the influence of hot water vapor (200°C) on the physicochemical and mineralogical properties of smectite-group minerals was studied. After the steam treatment, turbidity measurements, methylene-blue sorption, water adsorption, and cation exchange capacity (CEC) were measured on both untreated and treated samples. Mineralogical changes were monitored by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) was used to measure O, Al, and Si. Only a few parameters showed differences between the untreated and vapor-treated samples. Sedimentation volumes (SV) decreased following the treatment. As shown by XRD and XPS, the crystalline structure of smectite remained unaffected by the steam treatment. Equivalent sphere diameters (ESD) were not affected systematically by the steam treatment. Differences in CEC values between untreated and treated samples were observed, but only for smectites with monovalent interlayer cations. From the variety of different measurements the conclusion of the present study was that steam treatment changes the charge properties at or near the smectite particle surface.

Type
Article
Copyright
Copyright © Clay Minerals Society 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anthony, J.W. Bideaux, R.A. Bladh, K.W. and Nichols, M.C., 2013 Handbook of Mineralogy Chantilly, VA 20151-1110, USA Mineralogical Society of America.Google Scholar
Ashmawy, A.K. El-Hajji, D. Sotelo, N. and Muhammad, N., 2002 Hydraulic performance of untreated and polymertreated bentonite in inorganic landfill leachates Clays and Clay Minerals 50 546552.CrossRefGoogle Scholar
Baeyens, B. and Bradbury, M.H., 1997 A mechanistic description of Ni and Zn sorption on Na-montmorillonite. Part I: Titration and sorption measurements Journal of Contaminant Hydrology 27 199222.CrossRefGoogle Scholar
Baier, J., 1991 Griechischer Bentonit für Giebereien Giesserei 78 501506.Google Scholar
Beeley, P., 2001 Foundry Technology London Butterworth-Heinemann 719 pp..Google Scholar
Berghof, , 2012.Homepage of the Berghof companyGoogle Scholar
Bergmann, J. and Kleeberg, R., 1998 Rietveld analysis of disordered layer silicates Materials Science Forum 278-2 300305.CrossRefGoogle Scholar
Bish, D.L. Wu, W. Carey, J.W. Costanzo, P. Giese, R.F. Earl, W. and Oss, C.J., 1997 Effects of steam on the surface properties of Na-smectite Proceedings of the 11th International Clay Conference: Clays for our Future, Ottawa 569575.Google Scholar
Bujdák, J. Janek, M. Madejová, J. and Komadel, P., 1998 Influence of the layer charge density of smectites on the interaction with methylene blue Journal of the Chemical Society, Faraday Transactions 94 34873492.CrossRefGoogle Scholar
Bujdák, J. Janek, M. Madejová, J. and Komadel, P., 2001 Methylene blue interactions with reduced-charge smectites Clays and Clay Minerals 49 244254.CrossRefGoogle Scholar
Canesson, P., 1982 E.S.C.A. studies of clay minerals Advanced Techniques for Clay Mineral Analysis 34 211236.Google Scholar
Christidis, G.E. and Huff, W.D., 2009 Geological aspect and genesis of bentonites Elements 5 9398.CrossRefGoogle Scholar
Couture, R.A., 1985 Steam rapidly reduces the swelling capacity of bentonite Nature 318 5052.CrossRefGoogle Scholar
Couture, R.A., 1985 Rapid increases in permeability and porosity of bentonite-sand mixtures due to alteration by water vapor Materials Research Society Symposia Proceedings 44 515522.CrossRefGoogle Scholar
Czímerová, A. Jankovic, L. and Bujdák, J., 2004 Effect of exchangeable cations on the spectral properties of methylene blue in clay dispersions Journal of Colloid and Interface Science 274 126132.CrossRefGoogle ScholarPubMed
Dieng, M.A., 2005 Der Wasseraufnahmeversuch nach DIN 18132 in einem neu entwickelten Gerät Bautechnik 82 2832.CrossRefGoogle Scholar
DIN 6174 Farbmetrische Bestimmung von Farbmaßzahlen und Farbabständen im angenähert gleichförmigen CIELAB-Farbenraum. Ausgabe DIN 6174:2007–10.Google Scholar
Dohrmann, R. Genske, D. Karnland, O. Kaufhold, S. Kiviranta, L. Olsson, S. Plötze, M. Sandén, T. Sellin, P. Svensson, D. and Valter, M., 2012 Interlaboratory CEC and exchangeable cation study of bentonite buffer materials: I. Cu(II)-Triethylenentetramine method Clays and Clay Minerals 60 162175.CrossRefGoogle Scholar
Dontsova, K.M. Norton, D.L. Johnston, C.T. and Bigham, J.M., 2004 Influence of exchangeable cations on water adsorption by soil clays Soil Science Society of America Journal 68 12181227.CrossRefGoogle Scholar
Dukhin, S.S. Derjaguin, B.V., Matijevic, E., 1974 Equilibrium double layer and electrokinetic phenomena Surface and Colloid Science New York John Wiley & Sons 49272.Google Scholar
Eberl, D.D. Środoń, J. Kralik, M. Taylor, B.E. and Peterman, Z.E., 1990 Ostwald ripening of clays and metamorphic minerals Science 248 474477.CrossRefGoogle Scholar
Ebina, T. Iwasaki, T. Chatterjee, A. Katagiri, M. and Stucky, G.D., 1997 Comparative study of XPS and DFT with reference to the distributions of Al in tetrahedral and octahedral sheets of phyllosilicates Journal of Physical Chemistry B 101 11251129.CrossRefGoogle Scholar
Erdoğan, B. Demirci, , 1996 Activation of some Turkish bentonites to improve their drilling fluid properties Applied Clay Science 10 401410.CrossRefGoogle Scholar
EUBA European Bentonite Association, 2006 Position Paper, 10/2006 .Google Scholar
Fahrenholtz, W.G., Shackelford, J.F. and Doremus, R.H., 2008 Clays Ceramic and Glass Materials: Structure, Properties and Processing Berlin Springer 111133.CrossRefGoogle Scholar
Fairley, N., 2009 CasaXPS Manual — 2.3.15 Introduction to XPS and AES 177p..Google Scholar
Gitipour, S. Bowers, M.T. and Bodocsi, A., 1997 The use of modified bentonite for removal of aromatic organics from contaminated soil Journal of Colloid and Interface Science 196 191198.CrossRefGoogle ScholarPubMed
Grefhorst, C., 2006 Prüfung von Bentoniten — Ausführliche Bewertung der Eigenschaften und ihr Wert für die Praxis Giesserei 93 2631.Google Scholar
Grefhorst, C. Podobed, O. and Böhnke, S., 2005 Bentonitgebundene Formstoffe — Umlaufverhalten von Bentoniten unter besonderer Betrachtung des Kreislaufsystems und der Nasszugfestigkeit Giesserei 92 6367.Google Scholar
Grim, R.G. and Güven, N. (1978) Bentonites — Geology, Mineralogy, Properties and Uses. Developments in Sedimentology 24, Elsevier, Amsterdam.Google Scholar
Güven, N., 1990 Longevity of bentonite as buffer material in a nuclear-waste repository Engineering Geology 28 233247.CrossRefGoogle Scholar
Heuser, M. Andrieux, P. Petit, S. and Stanjek, H., 2013 Iron-bearing smectites: A revised relationship between structural Fe, b cell edge lengths and refractive indices Clay Minerals 48 97103.CrossRefGoogle Scholar
Jacobs, K.Y. and Schoonheydt, R.A., 2001 Time dependence of the spectra of methylene blue-clay mineral dispersions Langmuir 17 51505155.CrossRefGoogle Scholar
Jordan, G. Eulenkamp, C. Calzada, E. Schillinger, B. Hoelzel, M. Gigler, A. Stanjek, H. and Schmahl, W.W., 2013 Quantitative in-situ study on the dehydration of bentonite bonded molding sands Clays and Clay Minerals 61 133140.CrossRefGoogle Scholar
Kahr, G. and Madsen, F.T., 1995 Determination of the cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue adsorption Applied Clay Science 9 327336.CrossRefGoogle Scholar
Kaufhold, S. Dohrmann, R. and Klinkenberg, M., 2010 Water-uptake capacity of bentonites Clays and Clay Minerals 58 3743.CrossRefGoogle Scholar
Klinkenberg, M. Rickertsen, N. Kaufhold, S. Dohrmann, R. and Siegesmund, S., 2009 Abrasivity by bentonite dispersions Applied Clay Science 46 3742.CrossRefGoogle Scholar
Köster, H.M., 1979 Die chemische Sil ikatanalyse: Spektralphotometrische, komplexometrische und flammenspektrometrische Analysenmethoden Berlin Springer 212 pp..CrossRefGoogle Scholar
Kruyt, H.R., 1952 Colloid Science Volume 1 — Irreversible Systems Amsterdam Elsevier.Google Scholar
Lagaly, G. Schulz, O. and Zimehl, R., 1997 Dispersionen und Emulsionen. Einführung in die Kolloidik feinverteilter Stoffe einschließlich der Tonminerale 1st edition Germany Steinkopff-Verlag Darmstadt 285289.Google Scholar
Lange, H., 1968 Bestimmung von Teilchengrößen aus Trübung und Brechungsinkrement Kolloid Zeitschrift und Zeitschrift für Polymere 223 2430.CrossRefGoogle Scholar
Lange, H., 1969 Bestimmung der Teilchengröße in ABS-Kunststoffen Kolloid Zeitschrift und Zeitschrift für Polymere 232 753757.CrossRefGoogle Scholar
Lange, H., 1995 Comparative test of methods to determine particle size and particle size distribution in the submicron range Particle and Particle Systems Characterization 12 148157.CrossRefGoogle Scholar
Luckham, P.F. and Rossi, S., 1999 The colloidal and rheological properties of bentonite dispersions Advances in Colloid and Interface Science 82 4392.CrossRefGoogle Scholar
Ma, Y.-L. Xu, Z.-R. Guo, T. and You, P., 2004 Adsorption of methylene blue on Cu(II)-exchanged montmorillonite Journal of Colloid and Interface Science 280 283288.CrossRefGoogle ScholarPubMed
Madsen, F.T., 1998 Clay mineralogical investigations related to nuclear waste disposal Clay Minerals 33 109129.CrossRefGoogle Scholar
Meier, L.P. and Kahr, G., 1999 Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper (II) ion with triethylenetetramine and tetraethylenepentamine Clays and Clay Minerals 47 386388.CrossRefGoogle Scholar
Melik, D.H. and Fogler, H.S., 1983 Turbidimetric determination of particle size distributions of colloidal systems Journal of Colloid and Interface Science 92 161180.CrossRefGoogle Scholar
Mellah, A. and Chegrouche, S., 1997 The removal of zinc from aqueous solutions by natural bentonite Water Research 31 621629.CrossRefGoogle Scholar
Montes-H, G. and Geraud, Y., 2004 Sorption kinetics of water vapour of MX80 bentonite submitted to different physical-chemical and mechanical conditions Colloids and Surfaces A: Physicochemical and Engineering Aspects 235 1723.CrossRefGoogle Scholar
Montes-H, G. Duplay, J. Martinez, L. Geraud, Y. and Rousset-Tournier, B., 2003 Influence of interlayer cations on the water sorption and swelling-shrinkage of MX80 bentonite Applied Clay Science 23 309321.CrossRefGoogle Scholar
Mosser, C. Mosser, A. Romeo, M. Petit, S. and Decarreau, A., 1992 Natural and synthetic copper phyllosilicates studied by XPS Clays and Clay Minerals 40 11251129.CrossRefGoogle Scholar
Murray, H.H. (2007) Applied clay mineralogy — Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays. Developments in Clay Science 2, Elsevier, Amsterdam.Google Scholar
Neff, K.H., 1959 Über die Messung der Wasseraufnahme ungleichförmiger bindiger anorganischer Bodenarten in einer neuen Ausführung des Enslingerätes Die Bautechnik 39 415421.Google Scholar
Oscarson, D.W. and Dixon, D.A., 1989 The effect of steam on montmorillonite Applied Clay Science 4 279292.CrossRefGoogle Scholar
Oscarson, D.W. Dixon, D.A. and Gray, M.N., 1990 Swelling capacity and permeability of an unprocessed and a processed bentonitic clay Engineering Geology 28 281289.CrossRefGoogle Scholar
Parkhurst, D.L. and Appelo, C.A.J., 1999 User’s Guide to PHREEQC (Version 2) A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations Water-Resources Investigations Report 99-4259 Denver, Colorado, USA USGS Geological Survey 312 pp..Google Scholar
Paterson, E. Swaffield, R., Wilson, M.J., 1994 X-ray photoelectron spectroscopy Clay Mineralogy: Spectroscopic and Chemical Determinative Methods London Chapman & Hall 226259.CrossRefGoogle Scholar
Pusch, R., 2000 On the effect of hot water vapor on MX-80 clay Technical Report TR-00-16, SKB 41 pp..Google Scholar
Pusch, R. and Kasbohm, J., 2002 Alteration of MX-80 by hydrothermal treatment under high salt content conditions Technical Report TR-02-06, SKB 39 pp..Google Scholar
Recknagel, U. and Dahlmann, M., 2008 Spezialsande-Formgrundstoffe für die moderne Kern — und Formherstellung Düsseldorf, Germany Hüttenes-Albertus.Google Scholar
Scalia, J. and Benson, C.H., 2011 Hydraulic conductivity of geosynthetic clay liners exhumed from landfill final covers with composite barriers Journal of Geotechnical and Geoenvironmental Engineering 137 113.CrossRefGoogle Scholar
Träger, H. and Bührig-Polaczek, A., 2000 Foundry Technology Ullmann’s Encyclopedia of Industrial Chemistry New Jersey, USA Wiley.Google Scholar
Ufer, K. Stanjek, H. Roth, G. Dohrmann, R. Kleeberg, R. and Kaufhold, S., 2008 Quantitative phase analysis of bentonites by the Rietveld method Clays and Clay Minerals 56 272282.CrossRefGoogle Scholar
VDG P35 Prüfung von tongebundenen Formstoffen. Okt. 1999 Bestimmung des Anteils an bindefähigem Ton. 5 p., .Google Scholar
Viraraghavan, T. and Alfaro, F., 1996 Adsorption of phenol from wastewater by peat, fly ash and bentonite Journal of Hazardous Materials 57 5970.CrossRefGoogle Scholar
Wojdyr, M., 2010 Fityk: a general-purpose peak fitting program Journal of Applied Crystallography 43 11261128.CrossRefGoogle Scholar
Zhu, X. Jiang, D. and Tan, S., 2002 Preparation of silicon carbide reticulated porous ceramics Materials Science and Engineering A 323 232238.CrossRefGoogle Scholar