Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-16T22:12:09.512Z Has data issue: false hasContentIssue false

Infrared Studies of Surface Acidity and Reversible Folding in Palygorskite

Published online by Cambridge University Press:  02 April 2024

C. Blanco
Affiliation:
Departamento de Química, Universidad de Cantabria, 39005 Santander, Spain
J. Herrero
Affiliation:
Departamento de Química, Universidad de Cantabria, 39005 Santander, Spain
S. Mendioroz
Affiliation:
Instituto de Catálisis y Petroleoquímica, CSIC, Serrano, 119, 28006 Madrid, Spain
J. A. Pajares
Affiliation:
Instituto de Catálisis y Petroleoquímica, CSIC, Serrano, 119, 28006 Madrid, Spain

Abstract

The infrared absorption spectra of a palygorskite sample from Cáceres, Spain, showed two previously unreported bands in the OH-stretching region at 3420–3440 and 3220–3230 cm−1 after evacuation at 90°–230°C. These bands, which reached maximum intensity after the sample was heated at 150°C, were assigned to OH in the

$$\begin{array}{*{20}{c}} H \\: \\ {Si - O - Si\,and\,} \\ \end{array}\begin{array}{*{20}{c}} H \\: \\ {Si - O - A1} \\ \end{array}$$
groups, respectively. To characterize the nature of these OH groups, pyridine was adsorbed on the sample. The resultant spectra suggest that at 150°C the palygorskite folded and OH groups protonated, resulting in the formation of a deformed pyridinium ion between 150° and 290°C. A high concentration of thermally stable Lewis-acid sites on the surface of the palygorskite was also noted.

Type
Research Article
Copyright
Copyright © 1988, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. M., Clapp, T. V. and Clement, D. E., 1983 Catalysis by montmorillonites Clay Miner. 18 411421.CrossRefGoogle Scholar
Ballantine, J. A., Purnell, J. H. and Thomas, J. M., 1984 Sheet silicates: Broad spectrum catalysts for organic synthesis J. Mol. Catal. 27 157167.CrossRefGoogle Scholar
Barrer, R. M. and Mackenzie, N., 1954 Sorption by atta-pulgite. Part I. Availability of intracrystalline channels J. Phys. Chem. 58 560568.CrossRefGoogle Scholar
Benesi, H. A. and Winquist, B. H. C., 1978 Surface acidity of solid catalysts Adv. Catal. 27 97182.CrossRefGoogle Scholar
Bradley, W. F., 1940 The structural scheme of attapulgite Amer. Mineral. 25 405410.Google Scholar
Corma, A. and Wojciechowski, B. W., 1985 The chemistry of catalytic cracking Catal. Rev. Sci. Eng. 27 29150.CrossRefGoogle Scholar
Evole Martin, N. and Aragón de la Cruz, F., 1986 Síntesis de azucares a partir de gliceraldehido en presencia de mont-morillonita Na An. Quim. 82 256259.Google Scholar
Evole Martin, N. and Aragón de la Cruz, F., 1986 Sintesis de azúcares a partir de glicolaldehido en presencia de mont-morillonita Na An. Quim. 81 2225.Google Scholar
Farmer, V. C. and Mortland, M. M., 1966 An infrared study of the coordination of pyridine and water to exchangeable cations in montmorillonite and saponite J. Chem.Soc. (A) 344351.CrossRefGoogle Scholar
Farmer, V. C. and Russell, J. D., 1971 Interlayer complexes in layer silicates Trans. Faraday Soc. 67 27372749.CrossRefGoogle Scholar
Forni, L., 1973 Comparison of the methods for the determination of surface acidity of solid catalysts Catal. Rev. Sci. Eng. 8 65115.CrossRefGoogle Scholar
Galán, E. and Konta, J., 1981 The fibrous clay minerals in Spain Proc. 8th Conf. Clay Min. Petra Teplice, 1979 Prana Universita Karlova 239249.Google Scholar
Galán, E., Brell, J. M., La Iglesia, A., Robertson, R. H. S. and Bailey, S. W., 1975 The Cáceres palygorskite deposit, Spain Proc. Int. Clay Conf., Mexico City, 1975 Wilmette, Illinois Applied Publishing Ltd. 8194.Google Scholar
González, F., 1988 Palygorskitas espanolas. Aplicabilidad en adsorción y catálisis Tesis Doctoral Santander, Spain Universidad de Oveido 186.Google Scholar
Hayashi, H., Otsuka, R. and Imai, N., 1969 Infrared study of sepiolite and palygorskite on heating Amer. Mineral. 53 16131624.Google Scholar
Hughes, T. R. and White, H. M., 1967 A study of the surface structure of decationized Y zeolite by quantitative infrared spectroscopy J. Phys. Chem. 71 21922201.CrossRefGoogle Scholar
Knözinger, H., 1976 Specific poisoning and characterization of catalytically active oxide surfaces Adv. Catal. 25 184271.CrossRefGoogle Scholar
Kung, M. C. and Kung, H. H., 1985 IR studies of NH3, pyridine, CO, and NO adsorbed on transition metal oxides Catal. Rev. Sci. Eng. 27 425460.CrossRefGoogle Scholar
Parry, E. P., 1963 An infrared study of pyridine adsorbed on acidic solids: Characterization of surface acidity J. Catal. 2 371379.CrossRefGoogle Scholar
Primet, M., 1970 Contribution à l’étude par spectrométrie infrarouge des propriétés superficielles des bioxydes de titane Thèse Lyon, France Université de Lyon 4249.Google Scholar
Ruiz-Hitzky, E. and Casal, B., 1985 Epoxide rearrangement on mineral and silica-alumina surfaces J. Catal. 92 291295.CrossRefGoogle Scholar
Russell, J. D. and Farmer, V. C., 1974 Instrumentation and techniques The Infrared Spectra of Minerals London Mineralogical Society 1125.CrossRefGoogle Scholar
Serna, C., Van Scoyoc, G. E. and Ahlrichs, J. L., 1976 Uncoupled water found in palygorskite J. Chem. Phys. 65 33893390.CrossRefGoogle Scholar
Serna, C., Van Scoyoc, G. E. and Ahlrichs, J. L., 1977 Hydroxyl groups and water in palygorskite Amer. Mineral. 62 784792.Google Scholar
Serratosa, J. M., Mortland, M. M. and Farmer, V. C., 1979 Surface properties of fibrous clay minerals (palygorskite and sepiolite) Proc. Int. Clay Conf, Oxford, 1978 Amsterdam Elsevier 99109.Google Scholar
Scoyoc, G. E., Serna, C. J. and Ahlrichs, J. L., 1979 Structural changes in palygorskite during dehydration and dehydroxylation Amer. Mineral. 64 215223.Google Scholar
Yariv, S. and Cross, H., 1979 Geochemistry of Colloid Systems 291298.CrossRefGoogle Scholar