Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T14:05:02.452Z Has data issue: false hasContentIssue false

Influence of pH on the Hydrothermal Synthesis of Al-Substituted Smectites (Saponite, Beidellite, and Nontronite)

Published online by Cambridge University Press:  22 January 2024

I. Criouet
Affiliation:
Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Muséum National d’Histoire Naturelle, Sorbonne Université, CNRS UMR 7590, Paris, France
J. C. Viennet
Affiliation:
Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Muséum National d’Histoire Naturelle, Sorbonne Université, CNRS UMR 7590, Paris, France Unité Matériaux et Transformations (UMET), Université de Lille, INRA, ENSCL, CNRS UMR 8207, Lille, France
F. Baron
Affiliation:
Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS UMR 7285 Poitiers, France
E. Balan
Affiliation:
Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Muséum National d’Histoire Naturelle, Sorbonne Université, CNRS UMR 7590, Paris, France
A. Buch
Affiliation:
Laboratoire Génie des Procédés et Matériaux (LGPM), CentraleSupélec, Gif-Sur-Yvette, France
L. Delbes
Affiliation:
Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Muséum National d’Histoire Naturelle, Sorbonne Université, CNRS UMR 7590, Paris, France
M. Guillaumet
Affiliation:
Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Muséum National d’Histoire Naturelle, Sorbonne Université, CNRS UMR 7590, Paris, France
L. Remusat
Affiliation:
Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Muséum National d’Histoire Naturelle, Sorbonne Université, CNRS UMR 7590, Paris, France
S. Bernard*
Affiliation:
Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Muséum National d’Histoire Naturelle, Sorbonne Université, CNRS UMR 7590, Paris, France
*

Abstract

Smectitic clay minerals are unique indicators of paleoenvironmental conditions and exhibit a unique reactivity in the mineral world. Smectites may exhibit tetrahedral substitutions (Al3+, and sometimes Fe3+, can substitute for Si4+ in tetrahedral sites), resulting in a layer-charge increase, thereby impacting their properties (e.g. swelling and sorption capacities, catalytic properties, expandable abilities). The objective of the present study was to determine the influence of pH conditions on the hydrothermal production of smectite end-members exhibiting tetrahedral Al substitutions (saponite, beidellite, and nontronite), using X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) methods. The results of a series of syntheses conducted at various pH values allowed discussion of the crystallization pathways of these smectites from a mechanistic point of view. Altogether, the present study provided easily reproducible protocols for the hydrothermal production of pure saponite, nontronite, or beidellite (i.e. with no other mineral). The successful synthesis of pure saponite was achieved by exposing the starting gels to 230°C for 4 days in solutions at pH ranging from 5.5 to 14. The successful synthesis of pure beidellite was achieved by exposing the starting gels to 230°C for 9 days in a solution at pH 12. The successful synthesis of pure nontronite was achieved by exposing the starting gels to 150°C for 2.5 days in a solution at pH 12.5. Although extrapolating experimental results to natural settings remains difficult, the results of the present study may be of great help to constrain better the geochemical conditions existing or having existed on extraterrestrial planetary bodies.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: F. Javier Huertas

References

Abbott, A.N., Löhr, S., Trethewy, M.. (2019). Are clay minerals the primary control on the oceanic rare earth element budget?. Frontiers in Marine Science. 6, 504, 10.3389/fmars.2019.00504.CrossRefGoogle Scholar
Abdo, J., Haneef, M.D.. (2013). Clay nanoparticles modified drilling fluids for drilling of deep hydrocarbon wells. Applied Clay Science. 86, 7682, 10.1016/j.clay.2013.10.017.CrossRefGoogle Scholar
Abdulelah, H., Keshavarz, A., Hoteit, H., Abid, H., Goudeli, E., Ennis-King, J., Iglauer, S.. (2023). Hydrogen physisorption in earth-minerals: Insights for hydrogen subsurface storage. Journal of Energy Storage. 66, 107440, 10.1016/j.est.2023.107440.CrossRefGoogle Scholar
Allard, T., Balan, E., Calas, G., Fourdrin, C., Morichon, E., Sorieul, S.. (2012). Radiation-induced defects in clay minerals: A review. Nuclear Instruments and Methods in Physics Research B. 277, 112120, 10.1016/j.nimb.2011.12.044.CrossRefGoogle Scholar
Almqvist, B.S.G., Mainprice, D.. (2017). Seismic properties and anisotropy of the continental crust: Predictions based on mineral texture and rock microstructure. Reviews of Geophysics. 55, 367433, 10.1002/2016RG000552.CrossRefGoogle Scholar
Andrieux, P., Petit, S.. (2010). Hydrothermal synthesis of dioctahedral smectites: The Al-Fe3+ chemical series. Applied Clay Science. 48, 517, 10.1016/j.clay.2009.11.019.CrossRefGoogle Scholar
Balan, E., Allard, T., Morin, G., Fritsch, E., & Calas, G. (2020). Crystallochemistry of clay minerals, weathering processes and evolution of continental surfaces. In Bertrand, P. (Ed.) Electron paramagnetic resonance spectroscopy (pp. 109135). Springer, Cham. https://doi.org/10.1007/978-3-030-39668-8_5.CrossRefGoogle Scholar
Baron, F., Petit, S., Tertre, E., Decarreau, A.. (2016). Influence of aqueous si and fe speciation on tetrahedral fe(III) substitutions in nontronites: a clay synthesis approach. Clays and Clay Minerals. 64, 230244, 10.1346/CCMN.2016.0640309.CrossRefGoogle Scholar
Baron, F., Pushparaj, S.S.C., Fontaine, C., Sivaiah, M.V., Decarreau, A., Petit, S.. (2016). Microwave-assisted hydrothermal synthesis of Ni-Mg layered silicate clays. Current Microwave Chemistry. 3, 8589, 10.2174/2213335602666150317233416.CrossRefGoogle Scholar
Bello, M.L., Junior, A.M., Freitas, C.A., Moreira, M.L.A., da Costa, J.P., de Souza, M.A., Santos, BAMC, de Sousa, V.P., Castro, H.C., Rodrigues, C.R., Cabral, L.M.. (2022). Development of novel montmorillonite-based sustained release system for oral bromopride delivery. European Journal of Pharmaceutical Sciences. 175, 106222, 10.1016/j.ejps.2022.106222.CrossRefGoogle ScholarPubMed
Besselink, R., Stawski, T.M., Freeman, H.M., Hövelmann, J., To, D.J.. (2020). Mechanism of saponite crystallization from a rapidly formed amorphous intermediate. Crystal Growth & Design. 20, (5), 33653373, 10.1021/acs.cgd.0c00151.CrossRefGoogle Scholar
Blattmann, T.M., Liu, Z., Zhang, Y., Zhao, Y., Haghipour, N., Montluçon, D.B., Plötze, M., Eglinton, T.I.. (2019). Mineralogical control on the fate of continentally derived organic matter in the ocean. Science. 366, 742745, 10.1126/science.aax5345.CrossRefGoogle ScholarPubMed
Blukis, R., Schindler, M., Couasnon, T., Benning, L.G.. (2022). Mechanism and control of saponite synthesis from a self-assembling nanocrystalline precursor. Langmuir. 38, 76787688, 10.1021/acs.langmuir.2c00425.CrossRefGoogle ScholarPubMed
Boonruang, C., Sanumang, W.. (2021). Effect of nano-grain carbide formation on electrochemical behavior of 316L stainless steel. Scientific Reports. 11, 12602, 10.1038/s41598-021-91958-x.CrossRefGoogle ScholarPubMed
Boumaiza, H., Dutournié, P., Le Meins, J.-M., Limousy, L., Brendlé, J., Martin, C., Michau, N., & Dzene, L. (2020). Iron-rich clay mineral synthesis using design of experiments approach. Applied Clay Science, 199, 105876. https://doi.org/10.1016/j.clay.2020.105876.CrossRefGoogle Scholar
Brown, G., & Brindley, G. W. (1980). X-ray diffraction procedures for clay mineral identification. In Brindley, G. W. & Brown, G. (Eds.), Crystal structures of clay minerals and their x-ray identification. Mineralogical Society of Great Britain and Ireland.Google Scholar
Carniato, F., Gatti, G., Bisio, C.. (2020). An overview of the recent synthesis and functionalization methods of saponite clay. New Journal of Chemistry. 44, 99699980, 10.1039/D0NJ00253D.CrossRefGoogle Scholar
Carretero, M.I., Pozo, M.. (2009). Clay and non-clay minerals in the pharmaceutical industry. Applied Clay Science. 46, 7380, 10.1016/j.clay.2009.07.017.CrossRefGoogle Scholar
Carroll, D. (1970). Clay minerals: a guide to their X-ray identification. Special Papers of the Geological Society of America, 126, 181. https://doi.org/10.1130/SPE126.CrossRefGoogle Scholar
Carter, J., Poulet, F., Bibring, J.P., Mangold, N., Murchie, S.. (2013). Hydrous minerals on mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view. Journal of Geophysical Research: Planets. 118, 831858, 10.1029/2012JE004145.CrossRefGoogle Scholar
Choy, J.-H., Choi, S.-J., Oh, J.-M., Park, T.. (2007). Clay minerals and layered double hydroxides for novel biological applications. Applied Clay Science. 36, 122132, 10.1016/j.clay.2006.07.007.CrossRefGoogle Scholar
Churchman, G. J., Gates, W. P., Theng, B. K. G., & Yuan, G. (2006). Clays and clay minerals for pollution control. In Bergaya, F., Theng, B.K.G., Lagaly, G. (Eds.), Developments in Clay Science (pp. 625675). Amsterdam: Elsevier. https://doi.org/10.1016/S1572-4352(05)01020-2.Google Scholar
Corbin, G., Vulliet, E., Lanson, B., Rimola, A., Mignon, P.. (2021). Adsorption of pharmaceuticals onto smectite clay minerals: a combined experimental and theoretical study. Minerals. 11, 62, 10.3390/min11010062.CrossRefGoogle Scholar
de Jong, S.M., Spiers, C.J., Busch, A.. (2014). Development of swelling strain in smectite clays through exposure to carbon dioxide. International Journal of Greenhouse Gas Control. 24, 149161, 10.1016/j.ijggc.2014.03.010.CrossRefGoogle Scholar
de Mello Gabriel, G.V., Machado Pitombo, L., Tavares Rosa, L.M., AparecidoNavarrete, A., Botero, W.G., do Carmo, J.B., Camargo de Oliveira, L.. (2021). The environmental importance of iron speciation in soils: evaluation of classic methodologies. Environmental Monitoring and Assessment. 193, 63, 10.1007/s10661-021-08874-w.CrossRefGoogle ScholarPubMed
De Kimpe, C.R.. (1976). Formation of phyllosilicates and zeolites from pure silica-alumina gels. Clays and Clay Minerals. 24, 200207, 10.1346/CCMN.1976.0240408.CrossRefGoogle Scholar
Decarreau, A., Petit, S.. (2014). Fe3+/Al3+ partitioning between tetrahedral and octahedral sites in dioctahedral smectites. Clay Minerals. 49, 657665, 10.1180/claymin.2014.049.5.03.CrossRefGoogle Scholar
Decarreau, A., Grauby, O., Petit, S.. (1992). The actual distribution of octahedral cations in 2:1 clay minerals: results from clay synthesis. Applied Clay Science. 7, 147167, 10.1016/0169-1317(92)90036-M.CrossRefGoogle Scholar
Decarreau, A., Petit, S., Martin, F., Farges, F., Vieillard, P., Joussein, E.. (2008). Hydrothermal synthesis, between 75 and 150°C, of high-charge, ferric nontronites. Clays and Clay Minerals. 56, 322337, 10.1346/CCMN.2008.0560303.CrossRefGoogle Scholar
Delage, P., Cui, Y.J., Tang, A.M.. (2010). Clays in radioactive waste disposal. Journal of Rock Mechanics and Geotechnical Engineering. 2, 111123, 10.3724/SP.J.1235.2010.00111.CrossRefGoogle Scholar
Delvaux, B., Mestdagh, M.M., Vielvoye, L., Herbillon, A.J.. (1989). XRD, IR and ESR study of experimental alteration of Al-nontronite into mixed-layer kaolinite/smectite. Clay Minerals. 24, 617630, 10.1180/claymin.1989.024.4.05.CrossRefGoogle Scholar
Dzene, L., Brendlé, J., Limousy, L., Dutournié, P., Martin, C., Michau, N.. (2018). Synthesis of iron-rich tri-octahedral clay minerals: A review. Applied Clay Science. 166, 276287, 10.1016/j.clay.2018.09.030.CrossRefGoogle Scholar
Dzene, L., Dutournie, P., Brendle, J., Limousy, L., Le Meins, J.-M., Michelin, L., Vidal, L., Gree, S., Abdelmoula, M., Martin, C., Michau, N.. (2022). Characterization of iron-rich phyllosilicates formed at different Fe/Si ratios. Clays and Clay Minerals. 70, 580594, 10.1007/s42860-022-00204-6.CrossRefGoogle Scholar
Eggleton, R.A.. (1998). Hisingerite: a ferric kaolin mineral with curved morphology. Clays and Clay Minerals. 46, 400413, 10.1346/CCMN.1998.0460404.CrossRefGoogle Scholar
Ehlmann, B.L., Edwards, C.S.. (2014). Mineralogy of the Martian surface. Annual Review of Earth and Planetary Sciences. 42, (1), 291315, 10.1146/annurev-earth-060313-055024.CrossRefGoogle Scholar
Ehlmann, B.L., Mustard, J.F., Clark, R.N., Swayze, G.A., Murchie, S.L.. (2011). Evidence for low-grade metamorphism, hydrothermal alteration, and diagenesis on Mars from phyllosilicate mineral assemblages. Clays and Clay Minerals. 59, 359377, 10.1346/CCMN.2011.0590402.CrossRefGoogle Scholar
Ewis, D., Ba-Abbad, M.M., Benamor, A., El-Naas, M.H.. (2022). Adsorption of organic water pollutants by clays and clay minerals composites: A comprehensive review. Applied Clay Science. 229, 106686, 10.1016/j.clay.2022.106686.CrossRefGoogle Scholar
Farmer, V.C.. (1974). The infrared spectra of minerals. Mineralogical Society, 10.1180/mono-4.CrossRefGoogle Scholar
Farmer, V.C., Russell, J.D.. (1964). The infra-red spectra of layer silicates. Spectrochimica Acta. 20, 11491173, 10.1016/0371-1951(64)80165-X.CrossRefGoogle Scholar
Farmer, V.C., McHardy, W.J., Elsass, F., Robert, M.. (1994). hk–ordering in aluminous nontronite and saponite synthesized near 90°C: effects of synthesis conditions on nontronite composition and ordering. Clays and Clay Minerals. 42, 180186, 10.1346/CCMN.1994.0420208.CrossRefGoogle Scholar
Ferrage, E., Lanson, B., Sakharov, B. A., & Drits, V. A. (2005). Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite Hydration Properties. American Mineralogist, 90, 13581374.CrossRefGoogle Scholar
Ferrage, E., Lanson, B., Sakharov, B.A., Geoffroy, N., Jacquot, E., Drits, V.A.. (2007). Investigation of dioctahedral smectite hydration properties by modeling of X-ray diffraction profiles: Influence of layer charge and charge location. American Mineralogist. 92, 17311743, 10.2138/am.2007.2273.CrossRefGoogle Scholar
Fox, V.K., Kupper, R.J., Ehlmann, B.L., Catalano, J.G., Razzell-Hollis, J., Abbey, W.J., Schild, D.J., Nickerson, R.D., Peters, J.C., Katz, S.M., White, A.C.. (2021). Synthesis and characterization of Fe(III)-Fe(II)-Mg-Al smectite solid solutions and implications for planetary science. American Mineralogist. 106, 964982, 10.2138/am-2020-7419CCBYNCND.CrossRefGoogle Scholar
Ghadiri, M., Chrzanowski, W., Rohanizadeh, R.. (2015). Biomedical applications of cationic clay minerals. RSC Advances. 5, 2946729481, 10.1039/C4RA16945J.CrossRefGoogle Scholar
Goodman, B.A., Russell, J.D., Fraser, A.R., Woodhams, F.W.D.. (1976). A Mössbauer and I.R. spectroscopic study of the structure of nontronite. Clays and Clay Minerals. 24, 5359, 10.1346/CCMN.1976.0240201.CrossRefGoogle Scholar
Grauby, O., Petit, S., Decarreau, A., Baronnet, A.. (1993). The beidellite-saponite series: an experimental approach. European Journal of Mineralogy. 5, 623636, 10.1127/ejm/5/4/0623.CrossRefGoogle Scholar
Grauby, O., Petit, S., Decarreau, A., Baronnet, A.. (1994). The nontronite-saponite series: an experimental approach. European Journal of Mineralogy. 6, 99112, 10.1127/ejm/6/1/0099.CrossRefGoogle Scholar
Grubb, P.L.C.. (1969). Phase changes in aged sesquioxide gels and some analogies with katamorphic processes. Mineralium Deposita. 4, 3051, 10.1007/BF00206646.CrossRefGoogle Scholar
Guan, X., Dong, H., Ma, J., Jiang, L.. (2009). Removal of arsenic from water: effects of competing anions on As(III) removal in KMnO4-Fe(II) process. Water Research. 43, 38913899, 10.1016/j.watres.2009.06.008.CrossRefGoogle ScholarPubMed
Harder, H.. (1976). Nontronite synthesis at low temperatures. Chemical Geology. 18, 169180, 10.1016/0009-2541(76)90001-2.CrossRefGoogle Scholar
Hazen, R.M., Sverjensky, D.A., Azzolini, D., Bish, D.L., Elmore, S.C., Hinnov, L., Milliken, R.E.. (2013). Clay mineral evolution. American Mineralogist. 98, 20072029, 10.2138/am.2013.4425.CrossRefGoogle Scholar
Ho, T.A., Jove-Colon, C.F., Wang, Y.. (2023). Low hydrogen solubility in clay interlayers limits gas loss in hydrogen geological storage. Sustainable Energy & Fuels. 7, 32323238, 10.1039/D3SE00363A.CrossRefGoogle Scholar
Huertas, F.J., Cuadros, J., Huertas, F., Linares, J.. (2000). Experimental study of the hydrothermal formation of smectite in the beidellite-saponite series. American Journal of Science. 300, 504527, 10.2475/ajs.300.6.504.CrossRefGoogle Scholar
Hwang, H., Seoung, D., Lee, Y., Liu, Z., Liermann, H.-P., Cynn, H., Vogt, T., Kao, C.-C., Mao, H.-K.. (2017). A role for subducted super-hydrated kaolinite in earth’s deep-water cycle. Nature Geoscience. 10, 947953, 10.1038/s41561-017-0008-1.CrossRefGoogle Scholar
Ikari, M.J., Saffer, D.M., Marone, C.. (2009). Frictional and hydrologic properties of clay-rich fault gouge. Journal of Geophysical Research: Solid Earth. 114, B05409, 10.1029/2008JB006089.CrossRefGoogle Scholar
Jacquemot, P., Viennet, J.C., Bernard, S., Le Guillou, C., Rigaud, B., Delbes, L., Georgelin, T., Jaber, M.. (2019). The degradation of organic compounds impacts the crystallization of clay minerals and vice versa. Scientific Reports. 9, 20251, 10.1038/s41598-019-56756-6.CrossRefGoogle ScholarPubMed
Kalo, H., Möller, M.W., Ziadeh, M., Dolejš, D., Breu, J.. (2010). Large scale melt synthesis in an open crucible of Na-fluorohectorite with superb charge homogeneity and particle size. Applied Clay Science. 48, 3945, 10.1016/j.clay.2009.11.014.CrossRefGoogle Scholar
Katayama, I., Kubo, T., Sakuma, H., Kawai, K.. (2015). Can clay minerals account for the behavior of non-asperity on the subducting plate interface?. Progress in Earth and Planetary Science. 2, 30, 10.1186/s40645-015-0063-4.CrossRefGoogle Scholar
Kennedy, M.J., Pevear, D.R., Hill, R.J.. (2002). Mineral surface control of organic carbon in black shale. Science. 295, 657660, 10.1126/science.1066611.CrossRefGoogle ScholarPubMed
Kloprogge, J.T.. (1999). Synthesis of smectite clay minerals: a critical review. Clays and Clay Minerals. 47, 529554, 10.1346/CCMN.1999.0470501.CrossRefGoogle Scholar
Kloprogge, J.T., Frost, R.L.. (2000). The effect of synthesis temperature on the FT-Raman and FT-IR spectra of saponites. Vibrational Spectroscopy. 23, 119127, 10.1016/S0924-2031(00)00056-4.CrossRefGoogle Scholar
Kloprogge, J.T., Hartman, H.. (2022). Clays and the origin of life: the experiments. Life. 12, 259, 10.3390/life12020259.CrossRefGoogle Scholar
Kloprogge, J.T., Ponce, C.P.. (2021). Spectroscopic studies of synthetic and natural saponites: a review. Minerals. 11, 112, 10.3390/min11020112.CrossRefGoogle Scholar
Kloprogge, J.T., Jansen, J.B.H., Geus, J.W.. (1990). Characterization of synthetic Na-Beidellite. Clays and Clay Minerals. 38, 409414, 10.1346/CCMN.1990.0380410.CrossRefGoogle Scholar
Kloprogge, J.T., van der Eerden, A.M.J., Jansen, J.B.H., Geus, J.W., Schuiling, R.D.. (1993). Synthesis and paragenesis of Na-Beidellite as a function of temperature, water pressure, and sodium activity. Clays and Clay Minerals. 41, 423430, 10.1346/CCMN.1993.0410403.CrossRefGoogle Scholar
Kodama, H.. (1962). Identification of kaolin minerals in the presence of chlorite by X-ray diffraction and infrared absorption spectra. Clays and Clay Minerals. 11, 236249, 10.1346/CCMN.1962.0110123.CrossRefGoogle Scholar
Kohyama, N.. (1975). Hisingerite occurring as a weathering product of iron-rich saponite. Clays and Clay Minerals. 23, 215218, 10.1346/CCMN.1975.0230309.CrossRefGoogle Scholar
Komadel, P., Madejová, J., Bujdák, J.. (2005). Preparation and properties of reduced-charge smectites - a review. Clays and Clay Minerals. 53, 313334, 10.1346/CCMN.2005.0530401.CrossRefGoogle Scholar
Landais, P., Dohrmann, R., Kaufhold, S.. (2013). Overview of the clay mineralogy studies presented at the ‘Clays in natural and engineered barriers for radioactive waste confinement’ meeting, Montpellier, October 2012. Clay Minerals. 48, 149152, 10.1180/claymin.2013.048.2.00.CrossRefGoogle Scholar
Lantenois, S., Muller, F., Bény, J.-M., Mahiaoui, J., Champallier, R.. (2008). Hydrothermal synthesis of beidellites: Characterization and study of the cis- and trans-vacant character. Clays and Clay Minerals. 56, 3948, 10.1346/CCMN.2008.0560104.CrossRefGoogle Scholar
Lefevre, G., Fedoroff, M.. (2002). Synthesis of bayerite (β-Al(OH)3) microrods by neutralization of aluminate ions at constant pH. Materials Letters. 56, (6), 978983, 10.1016/S0167-577X(02)00650-X.CrossRefGoogle Scholar
Li, K., Wang, Q., Ma, H., Huang, H., Lu, H., Peng, P.. (2023). Effect of clay minerals and rock fabric on hydrocarbon generation and retention by thermal pyrolysis of Maoming oil shale. Processes. 11, 894, 10.3390/pr11030894.CrossRefGoogle Scholar
Madejová, J., Gates, W.P., & Petit, S. (2017). IR Spectra of Clay Minerals. In: Developments in Clay Science. Elsevier, pp. 107149.Google Scholar
Marchi, S., Raponi, A., Prettyman, T.H., Sanctis, M.C.D., Castillo-Rogez, J., Raymond, C.A., Ammannito, E., Bowling, T., Ciarniello, M., Kaplan, H., Palomba, E., Russell, C.T., Vinogradoff, V., Yamashita, N.. (2019). An aqueously altered carbon-rich Ceres. Nature Astronomy. 3, 140, 10.1038/s41550-018-0656-0.CrossRefGoogle Scholar
Meunier, A. (2005). Clays. Springer-Verlag, Berlin.Google Scholar
Meunier, A., Mas, A., Beaufort, D., Patrier, P., Dudoignon, P.. (2008). Clay minerals in basalt-hawaiite rocks from Mururoa atoll (French Polynesia). II. Petrography and Geochemistry. Clays and Clay Minerals. 56, 730750, 10.1346/CCMN.2008.0560612.CrossRefGoogle Scholar
Meyer, S., Bennici, S., Vaulot, C., Rigolet, S., Dzene, L.. (2020). Influence of the precursor and the temperature of synthesis on the structure of saponite. Clays and Clay Minerals. 68, 544552, 10.1007/s42860-020-00099-1.CrossRefGoogle Scholar
Millero, F.J., Yao, W., Aicher, J.. (1995). The speciation of Fe(II) and Fe(III) in natural waters. Marine Chemistry. 50, (1–4), 2139, 10.1016/0304-4203(95)00024-L.CrossRefGoogle Scholar
Milligan, W.O.. (1951). Recent X-ray diffraction studies on the hydrous oxides and hydroxides. The Journal of Physical Chemistry. 55, 497507, 10.1021/j150487a003.CrossRefGoogle Scholar
Milliken, R. & Bish, D. (2014). Distinguishing hisingerite from other clays and its importance for Mars. 45th Lunar and Planetary Science Conference, 2251.Google Scholar
Moldoveanu, G.A., Papangelakis, V.G.. (2012). Recovery of rare earth elements adsorbed on clay minerals: I. Desorption Mechanism. Hydrometallurgy. 117–118, 7178, 10.1016/j.hydromet.2012.02.007.CrossRefGoogle Scholar
Mozgawa, W., Krol, M., Barczyk, K.. (2011). FT-IR studies of zeolites from different structural groups. Chemik. 65, 667674.Google Scholar
Murray, H.H.. (1991). Overview - clay mineral applications. Applied Clay Science. 5, 379395, 10.1016/0169-1317(91)90014-Z.CrossRefGoogle Scholar
Murray, H.H.. (2000). Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Applied Clay Science. 17, 207221, 10.1016/S0169-1317(00)00016-8.CrossRefGoogle Scholar
Nakazawa, H., Yamada, H., Fujita, T.. (1992). Crystal synthesis of smectite applying very high pressure and temperature. Applied Clay Science. 6, 395401, 10.1016/0169-1317(92)90006-9.CrossRefGoogle Scholar
Nordheim, T.A., Hand, K.P., Paranicas, C.. (2018). Preservation of potential biosignatures in the shallow subsurface of Europa. Nature Astronomy. 2, 673, 10.1038/s41550-018-0499-8.CrossRefGoogle Scholar
Oleksiak, M.D., Ghorbanpour, A., Conato, M.T., McGrail, B.P., Grabow, L.C., Motkuri, R.K., Rimer, J.D.. (2016). Synthesis strategies for ultrastable zeolite gis polymorphs as sorbents for selective separations. Chemistry - A European Journal. 22, 1607816088, 10.1002/chem.201602653.CrossRefGoogle ScholarPubMed
Parrotin, F., Robin, V., Beaucaire, C., Descostes, M., Tertre, E.. (2023). Competitive ion-exchange reactions of Pb(II) (Pb2+/PbCl+) and Ra(II) (Ra2+) on smectites: experiments, modeling, and implication for 226Ra(II)/210Pb(II) disequilibrium in the environment. Chemosphere. 313, , 10.1016/j.chemosphere.2022.137369.CrossRefGoogle ScholarPubMed
Pelletier, M., Michot, L.J., Humbert, B., Barrès, O., de la Caillerie, J.B.D., Robert, J.L.. (2003). Influence of layer charge on the hydroxyl stretching of trioctahedral clay minerals: a vibrational study of synthetic Na- and K-saponites. American Mineralogist. 88, 18011808, 10.2138/am-2003-11-1221.CrossRefGoogle Scholar
Perry, C.C., Shafran, K.L.. (2001). The systematic study of aluminium speciation in medium concentrated aqueous solutions. Journal of Inorganic Biochemistry. 87, (1–2), 115124, 10.1016/S0162-0134(01)00326-9.CrossRefGoogle ScholarPubMed
Petit, S., Decarreau, A., Gates, W., Andrieux, P., Grauby, O.. (2015). Hydrothermal synthesis of dioctahedral smectites: the Al-Fe3+ chemical series. Part II: Crystal-Chemistry. Applied Clay Science. 104, 96105.Google Scholar
Petit, S., Baron, F., Decarreau, A.. (2017). Synthesis of nontronite and other Fe-rich smectites: a critical review. Clay Minerals. 52, 469483, 10.1180/claymin.2017.052.4.05.CrossRefGoogle Scholar
Phambu, N., Humbert, B., Burneau, A.. (2002). Use of diffuse reflectance infrared spectroscopy to monitor purification. Journal of Chemical Education. 79, (9), 1117, 10.1021/ed079p1117.CrossRefGoogle Scholar
Pierrot, D., & Millero, F. J. (2017). The speciation of metals in natural waters. Aquatic Geochemistry, 23, 120.CrossRefGoogle Scholar
Ponce, C.P., Kloprogge, J.T.. (2020). Urea-assisted synthesis and characterization of saponite with different octahedral (Mg, Zn, Ni, Co) and tetrahedral metals (Al, Ga, B), a review. Life. 10, 168, 10.3390/life10090168.CrossRefGoogle Scholar
Robin, V., Tertre, E., Beaucaire, C., Regnault, O., Descostes, M.. (2017). Experimental data and assessment of predictive modeling for radium ion-exchange on beidellite, a swelling clay mineral with a tetrahedral charge. Applied Geochemistry. 85, 19, 10.1016/j.apgeochem.2017.07.009.CrossRefGoogle Scholar
Romanov, V.N.. (2013). Evidence of irreversible CO2 intercalation in montmorillonite. International Journal of Greenhouse Gas Control. 14, 220226, 10.1016/j.ijggc.2013.01.022.CrossRefGoogle Scholar
Rother, G., Ilton, E.S., Wallacher, D., Hauβ, T., Schaef, H.T., Qafoku, O., Rosso, K.M., Felmy, A.R., Krukowski, E.G., Stack, A.G., Grimm, N., Bodnar, R.J.. (2013). CO2 sorption to subsingle hydration layer montmorillonite clay studied by excess sorption and neutron diffraction measurements. Environmental Science & Technology. 47, 205211, 10.1021/es301382y.CrossRefGoogle ScholarPubMed
Saadat, S., Rawtani, D., Parikh, G.. (2022). Clay minerals-based drug delivery systems for anti-tuberculosis drugs. Journal of Drug Delivery Science and Technology. 76, 103755, 10.1016/j.jddst.2022.103755.CrossRefGoogle Scholar
Salter, T.L., Watson, J.S., Sephton, M.A.. (2023). Effects of minerals (phyllosilicates and iron oxides) on the responses of aliphatic hydrocarbon containing kerogens (Type I and Type II) to analytical pyrolysis. Journal of Analytical and Applied Pyrolysis. 170, 105900, 10.1016/j.jaap.2023.105900.CrossRefGoogle Scholar
See, K.A., Chapman, K.W., Zhu, L., Wiaderek, K.M., Borkiewicz, O.J., Barile, C.J., Chupas, P.J., Gewirth, A.A.. (2015). The interplay of Al and Mg speciation in advanced Mg battery electrolyte solutions. Journal of the American Chemical Society. 138, 328337, 10.1021/jacs.5b10987.CrossRefGoogle ScholarPubMed
Singh, N.B.. (2022). Clays and clay minerals in the construction industry. Minerals. 12, 301, 10.3390/min12030301.CrossRefGoogle Scholar
Tamura, K.. (2000). Stepwise hydration of high-quality synthetic smectite with various cations. Clays and Clay Minerals. 48, 400404, 10.1346/CCMN.2000.0480311.CrossRefGoogle Scholar
Tayraukham, P., Jantarit, N., Osakoo, N., Wittayakun, J.. (2020). Synthesis of pure phase NaP2 zeolite from the gel of NaY by conventional and microwave-assisted hydrothermal methods. Crystals. 10, 951, 10.3390/cryst10100951.CrossRefGoogle Scholar
Viennet, J.C., Bultel, B., Riu, L., Werner, S.C.. (2017). Dioctahedral phyllosilicates versus zeolites and carbonates versus zeolites competitions as constraints to understanding early mars alteration conditions. Journal of Geophysical Research: Planets. 122, 23282343, 10.1002/2017JE005343.CrossRefGoogle Scholar
Viennet, J.C., Bernard, S., Le Guillou, C., Jacquemot, P., Balan, E., Delbes, L., Rigaud, B., Georgelin, T., Jaber, M.. (2019). Experimental clues for detecting biosignatures on Mars. Geochemical Perspectives Letters. 12, 2833, 10.7185/geochemlet.1931.CrossRefGoogle Scholar
Viennet, J.C., Bernard, S., Le Guillou, C., Sautter, V., Schmitt-Kopplin, P., Beyssac, O., Pont, S., Zanda, B., Hewins, R., Remusat, L.. (2020). Tardi-magmatic precipitation of Martian Fe/Mg-rich clay minerals via igneous differentiation. Geochemical Perspectives Letters. 14, 4752, 10.7185/geochemlet.2023.CrossRefGoogle Scholar
Viennet, J.C., Bernard, S., Le Guillou, C., Sautter, V., Grégoire, B., Jambon, A., Pont, S., Beyssac, O., Zanda, B., Hewins, R., Remusat, L.. (2021). Martian magmatic clay minerals forming vesicles: perfect niches for emerging life?. Astrobiology. 21, 605612, 10.1089/ast.2020.2345.CrossRefGoogle ScholarPubMed
Viennet, J.C., Le Guillou, C., Baron, F., Balan, E., Criouet, I., Delbes, L., Blanchenet, A., Laurent, B., Remusat, L., Bernard, S.. (2022). Experimental investigation of Fe-clay/organic interactions under asteroidal conditions. Geochimica Et Cosmochimica Acta. 318, 352365, 10.1016/j.gca.2021.12.002.CrossRefGoogle Scholar
Viennet, J.C., Roskosz, M., Nakamura, T., Beck, P., Baptiste, B., Lavina, B., Alp, E., Hu, M.Y., Zhao, J., Gounelle, M., Brunetto, R., Yurimoto, H., Noguchi, T., Okazaki, R., Yabuta, H., Naraoka, H., Sakamoto, K., Tachibana, S., Yada, T., Tsuda, Y.. (2023). Interaction between clay minerals and organics in asteroid Ryugu. Geochemical Perspectives Letters. 25, 812, 10.7185/geochemlet.2307.CrossRefGoogle Scholar
Waite, J. H., Glein, C. R., Perryman, R. S., Teolis, B. D., Magee, B. A., Miller, G., Grimes, J., Perry, M. E., Miller, K. E., Bouquet, A., Lunine, J. I., Brockwell, T., & Bolton, S. J. (2017). Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes. Science, 356, 155159.CrossRefGoogle ScholarPubMed
Yamada, H.. (1994). Formation of smectite crystals at high pressures and temperatures. Clays and Clay Minerals. 42, 674678, 10.1346/CCMN.1994.0420603.CrossRefGoogle Scholar
Yamada, H.. (1995). Cooling rate dependency of the formation of smectite crystals from a high-pressure and high-temperature hydrous melt. Clays and Clay Minerals. 43, 693696, 10.1346/CCMN.1995.0430605.CrossRefGoogle Scholar
Zhang, D., Zhou, C.H., Lin, C.X., Tong, D.S., Yu, W.H.. (2010). Synthesis of clay minerals. Applied Clay Science. 50, 111, 10.1016/j.clay.2010.06.019.CrossRefGoogle Scholar
Zhang, C., Petit, S., He, H., Villiéras, F., Razafitianamaharavo, A., Baron, F., Tao, Q., Zhu, J.. (2020). Crystal growth of smectite: a study based on the change in crystal chemistry and morphology of saponites with synthesis time. ACS Earth and Space Chemistry. 4, 1423, 10.1021/acsearthspacechem.9b00194.CrossRefGoogle Scholar
Zhang, L., Fu, X., Wang, A., Ling, Z.. (2022). Crystallinity effects on the vibrational spectral features of saponite: Implications for characterizing variable crystalline phyllosilicates on Mars. Icarus. 379, 114951, 10.1016/j.icarus.2022.114951.CrossRefGoogle Scholar
Zhou, C.H., Keeling, J.. (2013). Fundamental and applied research on clay minerals: from climate and environment to nanotechnology. Applied Clay Science. 74, 39, 10.1016/j.clay.2013.02.013.CrossRefGoogle Scholar
Zviagina, B.B., McCarty, D.K., Środonón, J., Drits, V.A.. (2004). Interpretation of infrared spectra of dioctahedral smectites in the region of OH-stretching vibrations. Clays and Clay Minerals. 52, 399410, 10.1346/CCMN.2004.0520401.CrossRefGoogle Scholar
Supplementary material: File

Criouet et al. supplementary material
Download undefined(File)
File 855.4 KB