Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-04T06:55:25.365Z Has data issue: false hasContentIssue false

Illitization of Early Paleozoic K-Bentonites in the Baltic Basin: Decoupling of Burial- and Fluid-Driven Processes

Published online by Cambridge University Press:  01 January 2024

Peeter Somelar*
Affiliation:
Department of Geology, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
Kalle Kirsimäe
Affiliation:
Department of Geology, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
Rutt Hints
Affiliation:
Department of Geology, University of Tartu, Ravila 14a, 50411 Tartu, Estonia Estonian Museum of Natural History, Lai 29a, 10133 Tallinn, Estonia
Juho Kirs
Affiliation:
Department of Geology, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
*
* E-mail address of corresponding author: psomelar@ut.ee

Abstract

The mineralogical characteristics of Ordovician and Silurian K-bentonites in the Baltic Basin were investigated in order to understand better the diagenetic development of these sediments and to link illitization with the tectonothermal evolution of the Basin. The driving mechanisms of illitization in the Baltic Basin are still not fully understood. The organic material thermal alteration indices are in conflict with the illite content in mixed-layer minerals. The clay fraction of the bentonites is mainly characterized by mixed-layered illite-smectite and kaolinite except in the Upper Ordovician Katian K-bentonites where mixed-layer chlorite-smectite (corrensite) occurs. The variation in expandability plus other geological data suggest that the illitization of Ordovician and Silurian K-bentonites in the Baltic Basin was controlled by a combination of burial and fluid driven processes. The illitization in the south and southwest sectors of the basin was effected mainly by burial processes. The influence of the burial process decreases with decreasing maximum burial towards the central part of the basin. The advanced illitization of the shallowburied succession in the north and northwest sectors of the basin was enhanced by the prolonged flushing of K-rich fluids in relation to the latest phase of development of the Scandinavian Caledonides ≈420–400 Ma.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bauer, A. and Velde, B., 1999 Smectite transformation in high molar KOH solutions Clay Minerals 34 259273.CrossRefGoogle Scholar
Bauer, A. Lanson, B. Ferrage, E. Emmerich, K. Taubald, H. Schild, D. and Velde, B., 2006 The fate of smectite in KOH solutions American Mineralogist 91 13131322.CrossRefGoogle Scholar
Bergström, S.M. Huff, W.D. Kolata, D.R. and Bauert, H., 1992 Silurian K-bentonites in the Iapetus Region: A preliminary event-stratigraphic and tectonomagmatic assessement GFF 114 327334.Google Scholar
Bergström, S.M. Huff, W.D. Kolata, D.R. and Bauert, H., 1995 Nomenclature, stratigraphy, chemical fingerprinting and areal distribution of some Middle Ordovician K-bentonites in Baltoscandia GFF 117 113.CrossRefGoogle Scholar
Bergström, S.M. Huff, W.D. and Kolata, D.R., 1998 Early Silurian (Llandoverian) K-bentonites discovered in the southern Appalachian thrust belts, eastern USA: Stratigraphy, geochemistry, and tectonomagmatic and paleogeographic implications GFF 120 149158.CrossRefGoogle Scholar
Bergström, S.M. Huff, W.D. Saltzman, M.R. Kolata, D.R. and Leslie, S.A., 2004 The greatest volcanic ash falls in the Phanerozoic: Trans-Atlantic relations of the Ordovician Millbrig and Kinnekulle K-bentonites The Sedimentary Record 2 48.CrossRefGoogle Scholar
Brimhall, G.H. and Dietrich, W.E., 1987 Constitutive mass balance relations between chemical composition, volume, density, porosity and strain in metasomatic hydrothermal systems: Results on weathering and pedogenesis Geochimica et Cosmochimica Acta 51 567587.CrossRefGoogle Scholar
Christidis, G.E., 2001 Formation and growth of smectite in bentonites: a case study from Kimolos island, Aegean, Greece Clays and Clay Minerals 49 204215.CrossRefGoogle Scholar
Clauer, N., 2006 Towards an isotopic modeling of the illitization process based on data of illite-type fundamental particles from mixed layer illite-smectite Clays and Clay Minerals 54 116127.CrossRefGoogle Scholar
Deconinck, J.F. Debrabant, P. and Strasser, A., 1988 Formation of illitic minerals at surface temperatures in Purbeckian sediments (Lower Berriasian, Swiss and French Jura) Clay Minerals 23 91103.CrossRefGoogle Scholar
Eberl, D.D. Środoń, J. and Northrop, R.H., 1986 Potassium fixation in smectite by wetting and drying ACS Symposium Series, Geochemical Processes at Mineral Surfaces 323 296326.CrossRefGoogle Scholar
Elliott, W.C. and Aronson, J.L., 1987 Alleghanian episode of K-bentonite illitization in the southern Appalachian Basin Geology 15 735739.Google Scholar
Grotek, I., 1999 Origin and thermal maturity of the organic matter in the Lower Palaeozoic rocks of the Pomeranian Caledonides and their foreland (northern Poland) Geological Quarterly 43 297308.Google Scholar
Hay, R.L. and Guldman, S.G., 1987 Diagenetic alteration of silicic ash in Searles Lake, California Clays and Clay Minerals 35 449457.CrossRefGoogle Scholar
Hay, R.L. Lee, M. Kolata, D.R. Mathews, J.C. and Morton, J.P., 1988 Episodic potassic diagenesis of Ordovician tufts in the Mississippi Valley area Geology 16 743747.2.3.CO;2>CrossRefGoogle Scholar
Hendriks, B. Andriessen, P. Huigen, Y. Leighton, C. Redfield, T. Murrell, G. Gallagher, K. and Nielsen, S.B., 2007 A fission track data compilation for Fennoscandia The Norwegian Journal of Geology 87 143155.Google Scholar
Hints, R. Kirsimäe, K. Somelar, P. Kallaste, T. and Kiipli, T., 2006 Chloritization of Late Ordovician K-bentonites from the northern Baltic palaeobasin — influence from source material or diagenetic environment Sedimentary Geology 191 5566.CrossRefGoogle Scholar
Hints, R. Kirsimäe, K. Somelar, P. Kallaste, T. and Kiipli, T., 2008 Multiphase Silurian bentonites in the Baltic Palaeobasin Sedimentary Geology 209 6979.CrossRefGoogle Scholar
Hower, R.J. Eslinger, E.V. Hower, M.E. and Perry, E.A., 1976 Mechanisms of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence Geological Society of America Bulletin 87 725737.2.0.CO;2>CrossRefGoogle Scholar
Huff, W.D. Kolata, D.R. Bergström, S.M. and Zhang, Y.-S., 1996 Large-magnitude Middle Ordovician volcanic ash falls in North America and Europe: dimensions, emplacement and post-emplacement characteristics Journal of Volcanology and Geothermal Research 73 285301.CrossRefGoogle Scholar
Kastner, M. and Siever, R., 1979 Low-temperature feldspars in sedimentary rocks American Journal of Science 279 435479.CrossRefGoogle Scholar
Kepežinskas, K. Laškovas, J. and Šimkevicius, P., 1994 The Ordovician metabentonites of the Baltic region as a reflection of volcanic activity in the Iapaetus paleoocean-Tornquist Sea Geology 16 3442.Google Scholar
Kiipli, T. Kiipli, E. Kallaste, T. Hints, R. Somelar, P. and Kirsimäe, K., 2007 Altered volcanic ash as an indicator of marine environment, reflecting pH and sedimentation rate — example from the Ordovician Kinnekulle bed of Baltoscandia Clays and Clay Minerals 55 177188.CrossRefGoogle Scholar
Kirs, J. Haapala, I. and Rämö, O.T., 2004 Anorogenic magmatic rocks in the Estonian crystalline basement. Proceedings of the Estonian Academy of Sciences Geology 53 210225.Google Scholar
Kirsimäe, K. and Jrgensen, P., 2000 Mineralogical and Rb-Sr isotope studies of low-temperature diagenesis of Lower Cambrian clays of the Baltic Palaeobasin of North Estonia Clays and Clay Minerals 48 95105.CrossRefGoogle Scholar
Koistinen, T., 1996 Explanation to the Map of Precambrian basement of the Gulf of Finland and surrounding area 1:1 million Espoo Geological Survey of Finland.Google Scholar
Lehtinen, M., Nurmi, P.A., and Rämö, O.T. (2005) Precambrian Geology of Finland Key to the Evolution of the Fennoscandian Shield. Developments in Precambrian Geology, 14. Elsevier, Amsterdam, 736 p.CrossRefGoogle Scholar
Mark, D.F. Parnell, J. Kelley, S.P. and Sherlock, S.C., 2007 Resolution of regional fluid flow related to successive orogenic events on the Laurentian margin Geology 35 547550.CrossRefGoogle Scholar
Marmo, V. (1971) Granite Petrology and the Granite Problem. Developments in Petrology, 2. Elsevier, Amsterdam, 244 pp.Google Scholar
Mertanen, S. Airo, M.-L. Elminen, T. Niemelä, R. Pajunen, M. Wasenius, P. and Wennerström, M., 2008 Paleomagnetic evidence for Mesoproterozoic — Paleozoic reactivation of the Paleoproterozoic crust in southern Finland 47 215252.Google Scholar
Meunier, A., 2005 Clays Germany Springer, Heidelberg.Google Scholar
Milnes, A.G. Wennberg, O.P. Skar, O. and Koestler, A.G., 1997 Contraction, extension and timing in the South Norwegian Caledonides; the Sognefjord transect Orogeny through Time 121 123148.Google Scholar
Moore, D M and Reynolds, RC Jr., 1997 X-ray Diffraction and the Identification and Analysis of Clay Minerals 2nd edition UK Oxford University Press, Oxford.Google Scholar
Nehring-Lefeld, M. Modlmski, Z. and Swadowska, E., 1997 Thermal evolution of the Ordovician in the western margin of the East—European Platform: CAI and Ro data Geological Quarterly 41 129138.Google Scholar
Nikishin, A.M. Ziegler, P.A. Stephenson, R.A. Cloetingh, S.A.P.L. Furne, A.V. Fokin, P.A. Ershow, A.V. Bolotov, SN K MV Alekseev, A.S. Gorbachev, V.I. Shipilov, E.V. Lankreijer, A. Bembinova, E.Y.u. and Shalimov, I.V., 1996 Late Precambrian to Triassic history of the East European Craton: dynamics of sedimentary basin evolution Tectonophysics 268 2363.CrossRefGoogle Scholar
Plado, J. Preeden, U. Puura, V. Pesonen, L.J. Kirsimae, K. Pani, T. and Elbra, T., 2008 Palaeomagnetic age of remagnetizations in Silurian dolomites, Rostla quarry (Central Estonia) Geological Quarterly 52 213224.Google Scholar
Plado, J. Preeden, U. Pesonen, L.J. Mertanen, S. and Puura, V., 2010 Magnetic history of early and middle Ordovician sedimentary sequence, northern Estonia International Journal of Geophysics 180 147157.CrossRefGoogle Scholar
Plançon, A. and Drits, V.A., 2000 Phase analysis of clays using an expert system and calculation programs for X-ray diffraction by two- and three-component mixed-layer minerals Clays and Clay Minerals 48 5762.CrossRefGoogle Scholar
Plink-Björklund, P. and Björklund, L., 1999 Sedimentary response in the Baltic Devonian Basin to post-collisional events in the Scandinavian Caledonides GFF 121 7980.Google Scholar
Pollastro, R.M., 1993 Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississipian age Clays and Clay Minerals 41 119133.CrossRefGoogle Scholar
Poprawa, P. Šliaupa, S. Stephenson, R. and Lazauskien, J., 1999 Late Vendian—Early Palaeozoic tectonic evolution of the Baltic Basin: regional tectonic implications from subsidence analysis Tectonophysics 314 219239.CrossRefGoogle Scholar
Poprawa, P. Šliupa, S. and Sidorov, V., 2006 Late Silurian to Early Devonian intra-plate compression in the foreland of Caledonian orogen (central part of the Baltic Basin) — analysis of seismic data Prace Panstwowego Institutu Geologicznego 186 207216.Google Scholar
Rateev, M.A. and Gradusov, B.P., 1971 Types of mixed-layer varieties of mica-montmorillonitic series in Silurian-Ordovician metabenonites of Baltic area Lithology and Mineral Resources 2 7483.Google Scholar
Rey, P. Burg, J.P. and Casey, M., 1997 The Scandinavian Caledonides and their relationship to the Variscan Belt Orogeny through Time 121 179200.Google Scholar
Sandler, A. and Saar, H., 2007 R1-type illite-smectite formation at near-surface temperatures Clay Minerals 42 245253.CrossRefGoogle Scholar
Sandler, A. Harlavan, Y. and Steinitz, G., 2004 Early formation of K-feldspar in shallow-marine sediments at near-surface temperatures (southern Israel): evidence from K-Ar dating Sedimentology 51 323338.CrossRefGoogle Scholar
Sheppard, R.A. and Hay, R.L., 2001 Formation of zeolites in open hydrologic system Natural Zeolites: Occurrence, Properties, Applications 45 261276.CrossRefGoogle Scholar
Somelar, P. Kirsimäe, K. and Środoń, J., 2009 Mixed-layer illite-smectite in the Kinnekulle bentonite, northern Baltic Basin Clay Minerals 44 455468.CrossRefGoogle Scholar
Środoń, J., 1999 Extracting K-Ar ages from shales: A theoretical test Clay Minerals 33 375378.CrossRefGoogle Scholar
Środoń, J. and Clauer, N., 2001 Diagenetic history of Lower Palaeozoic sediments in Pomerania (northern Poland) traced across the Teisseyre-Tornquist tectonic zone using mixed-layer illite-smectite Clay Minerals 36 1527.CrossRefGoogle Scholar
Środoń, J. and Eberl, D.D., 1984 Illite Micas 13 495544.CrossRefGoogle Scholar
Środoń, J. Clauer, N. Huff, W.D. Dudek, T. and Banas, M., 2009 K-Ar dating of Ordovician K-bentonites from the Baltic Basin and the Baltic Shield: implications for the role of temperature and time in the illitization of smectite Clay Minerals 44 361387.CrossRefGoogle Scholar
Šucha, V. Kraus, I. Gerthofferova, H. Petes, J. and Serekova, M., 1993 Smectite to illite conversion bentonites and shales of the East Slovak Basin Clay Minerals 28 243254.CrossRefGoogle Scholar
Sundblad, K. Kivisilla, J. Puura, V. Jonsson, E. and Fedorenko, J., 1999 Palaeozoic Pb(±Zn) mineralization in Baltic Sea region GFF 121 7677.Google Scholar
Talyzina, N.M. Moldowan, J.M. Johannisson, A. and Fago, F.J., 2000 Affinities of Early Cambrian acritarchs studied by using microscopy, fluorescence flow cytometry and biomarkers Review of Paleobotany and Palynology 108 3753.CrossRefGoogle Scholar
Torsvik, T.H. and Rehnströme, F., 2003 The Tornquist Sea and Baltica—Avalonia docking Tectonophysics 362 6782.CrossRefGoogle Scholar
Tullborg, E.-L. Larson, S.-A. Bjorklund, L. Samuelsson, L. and Stigh, J., 1995 Thermal evidence of Caledonide foreland, molasses sedimentation in Fennoscandia Stockholm Swedish Nuclear Fuel and Waste Management Co..Google Scholar
Zdanavièiůte, O., 1997 New data on thermal maturity of organic matter in source rocks Lithosphere 1 7679.Google Scholar