Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-19T23:57:33.906Z Has data issue: false hasContentIssue false

Identification and Structure of Two Types of Allophane from Volcanic Ash Soils and Tephra

Published online by Cambridge University Press:  01 July 2024

R. L. Parfitt
Affiliation:
Soil Bureau, Department of Scientific and Industrial Research, Lower Hutt, New Zealand
R. J. Furkert
Affiliation:
Soil Bureau, Department of Scientific and Industrial Research, Lower Hutt, New Zealand
Teruo Henmi
Affiliation:
Ehime University, Matsuyama, Japan

Abstract

Samples containing allophane with molar Al/Si ratios from 1.0 to 2.0 have been examined by infrared spectroscopy, X-ray fluorescence, and phosphate adsorption methods. The infrared spectra of allophane with Al/Si ratios close to 2.0 showed that the wall of the allophane spherules is made up of imogolite structural units similar to “proto-imogolite.” X-ray fluorescence gave no clear evidence of Al in tetrahedral sites (AlIV), while pyridine adsorption results suggested that a small number of Bronsted acid sites (AlIVOH) are present in silica-rich allophanes. Lewis acid sites (AlH2O) are present in both silica-rich and alumina-rich allophanes. The results suggest that the framework for the allophane structure is an Al octahedral sheet.

Allophanes with Al/Si ratios close to 1.0 contain condensed silicate units either on the outside surface of the Al octahedral sheet, giving rise to a halloysite-like structure, or bonded on the inside surface of an imogolite-like structure. Allophanes with Al/Si ratios between 1.0 and 2.0 appear to be mixtures of the “proto-imogolite” structure and the allophane (Al/Si = 1.0) structure.

Резюме

Резюме

Образцы, содержащие аллофан с молярными отношениями Al/Si от 1,0 до 2,0, были исследованы методами инфракрасной спектроскопии, рентгеновской флюоресценции, и фосфатной адсорбции. Инфракрасные спектры аллофана с отношениями Al/Si близкими к 2,0 показали, что оболочка аллофановых сфер состоит из имоголитовых структурных единиц похожих на «прото-имоголит». Рентгеновская флуоресценция не дала ясного доказательства присутствия Аl в тетраэдрических структурах (AlIV), тогда как результаты пиридиновой адсорбции указывают на то, что небольшое количество кислотных структур Бронстеда (AlIVOH) присутствует в аллофанах богатых кремнеземом. Кислотные структуры Льюиса (АlН2O) присутствуют как в аллофанах богатых кремнеземом, так и в аллофанах богатых алюминием. Результаты показывают, что основой для аллофановой структуры является октаэдрический лист.

Аллофаны с пропорциями Al/Si близкими к 1,0 содержат уплотненные силикатные единицы. Возможные расположения этих единиц находятся на наружной поверхности октаэдрического листа А1 для галлуазитообразной структуры или связаны с внутренней поверхностью имоголитообразной структуры. Аллофаны с отношениями Al/Si между 1,0 и 2,0 представляют смесь «протоимоголитовой» структуры и аллофан (Al/Si = 1,0) структуры. [N.R.]

Resümee

Resümee

Proben, die Allophan mit molaren Al/Si-Verhältnissen von 1,0 bis 2,0 enthielten, wurden mittels Infrarotspektroskopie, Röntgenfluoreszenz, und Phosphatadsorptionsmethoden untersucht. Die Infrarotspektren der Allophane mit Al/Si-Verhältnissen nahe 2,0 zeigten, daß die Wand der Allophankügelchen aus Einheiten mit Imogolitstruktur aufgebaut sind, die dem “Proto-Imogolit” ähnlich sind. Die Röntgen-fluoreszenzuntersuchung brachte keinen eindeutigen Hinweis für AI auf Tetraederplätzen (AlIV). Die Ergebnisse der Pyridinadsorption deuten darauf hin, daß in den Silizium-reichen Allophanen eine kleine Anzahl von Bronstedsäureplätzen (AlIVOH) vorhanden sind. Lewissäureplätze (A1H2O) sind sowohl in Silizium-reichen als auch in Aluminium-reichen Allophanen vorhanden. Dieses Ergebnis deutet darauf hin, daß das Gerüst der Allophanstruktur eine Aluminiumoktaederschicht ist.

Allophane mit Al/Si-Verhältnissen nahe 1,0 enthalten kondensierte Silikateinheiten. Die möglichen Lagen für diese Einheiten sind auf der äußeren Oberfläche der Aluminiumoktaederschicht, wodurch sie eine Halloysit-ähnliche Struktur ergeben, oder sie sind an die innere Oberfläche einer Imogolit-ähnlichen Struktur gebunden. Allophane mit Al/Si-Verhältnissen zwischen 1,0 und 2,0 scheinen Mischungen aus der “Proto-Imogolit”-Struktur und der Allophan (Al/Si = 1,0) struktur zu sein. [U.W.]

Résumé

Résumé

Des échantillons contenant des proportions molaires Al/Si de 1,0 à 2,0 ont été examinés par des méthodes de spectroscopie infrarouge, de fluorescence aux rayons X, et d'adsorption de phosphate. Le spectre infrarouge de l'allophane avec des proportions Al/Si près de 2,0 montre que la paroi des sphérules d'allophane est composée d'unites structurales d'imogolite semblables à la “proto-imogolite.” La fluorescence aux rayons X n'a pas démontré clairement la presence d'Al dans les sites tetraèdres (AlIV), tandis que les résultats d'adsorption de pyridine suggèrent qu'un petit nombre de sites acides Bronsted (AlIVOH) sont présentes dans les allophanes riches en silice. Des sites acides Lewis (AlH2O) sont présents à la fois dans les allophanes riches en silice et dans ceux riches en aluminium. Les résultats suggèrent que la charpente pour la structure allophane est un feuillet Al octaèdre.

Des allophanes avec des proportions Al/Si près de 1.0 contiennent des unités de silice condensées. Les positions possibles pour ces unités sont sur la surface extérieure du feuillet octaèdre Al pour donner une structure semblable à l'halloysite, ou liées à la surface intérieure d'une structure semblable à l'imogolite. Les allophanes ayant des proportions d'entre 1,0 et 2,0 semblent être des mélanges de la structure “protoimogolite” et de la structure semblable à l'allophane (Al/Si = 1,0). [D.J.]

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bates, T. F., (1959) Morphology and crystal chemistry of 1:1 layer lattice silicates Amer. Mineral. 44 78114.Google Scholar
Cradwick, P. D. G. Farmer, V. C. Russell, J. D. Masson, C. R. Wada, K. and Yoshinga, N., (1972) Imogolite, a hydrated aluminum silicate of tubular structure Nature (London) 240 187189.Google Scholar
Farmer, V. C. and Fraser, A. R., (1979) Synthetic imogolite, a tubular hydroxyaluminum silicate VI International Clay Conference 1978 Oxford M.M.MortlandandV. 547553.Google Scholar
Farmer, V. C. Fraser, A. R. Russell, J. D. and Yoshinaga, N., (1977) Recognition of imogolite structures in allophanic clays by infrared spectroscopy Clay Miner. 12 5557.CrossRefGoogle Scholar
Farmer, V. C. Fraser, A. R. and Tait, J. M., (1979) Characterization of the chemical structures of natural and synthetic aluminosilicate gels and sols by infrared spectroscopy Geochim. Cosmochim. Acta 43 14171420.CrossRefGoogle Scholar
Flanigen, E. M., (1976) Structural analysis by IR spectroscopy Zeolite Chemistry and Catalysis 171 80117.Google Scholar
Flanigen, E. M. Khatami, H. and Szymanski, H. A., (1971) Infrared structural studies of zeolite frameworks Adv. Chem. Ser. 101 201228.CrossRefGoogle Scholar
Goh, K. M. and Pullar, W. A., (1977) Radiocarbon dating techniques for tephras in central North Island, New Zealand Geoderma 18 265278.CrossRefGoogle Scholar
Greenland, D. J. Mott, C. J. B., Greenland, D. J. and Hayes, M. H. B., (1978) Surfaces of soil particles The Chemistry of Soil Constituents London Wiley 321354.Google Scholar
Henmi, T., (1977) The dependence of surface acidity on chemical composition (SiO2/Al2O3 molar ratio) of allophanes Clay Miner. 12 356358.CrossRefGoogle Scholar
Henmi, T. and Wada, K., (1974) Surface acidity of imogolite and allophane Clay Miner. 10 231245.CrossRefGoogle Scholar
Henmi, T. and Wada, K., (1976) Morphology and composition of allophane Amer. Mineral. 61 379390.Google Scholar
Parfitt, R. L. and Henmi, T., (1980) Structure of some allophanes from New Zealand Clays & Clay Minerals 28 285294.CrossRefGoogle Scholar
Parfitt, R. L. Russell, J. D. and Farmer, V. C., (1976) Confirmation of the surface structures of goethite (α-FeOOH) and phosphated goethite by infrared spectroscopy J. Chem. Soc. Faraday 72 10821087.CrossRefGoogle Scholar
Radoslovich, E. W., (1963) The cell dimensions and symmetry of layer-lattice silicates, VI. Serpentine and kaolin morphology Amer. Mineral. 48 368378.Google Scholar
Tamura, S., (1967) Studies on the distribution and characteristics of volcanogenous soils in Kyushu. (Part 2) Aso Volcano District J. Sci. Soil Manure, Japan 38 449453.Google Scholar
Wada, K., (1966) Deuterium exchange of hydroxyl groups in allophane Soil Sci. Plant Nutr. (Tokyo) 12 814.CrossRefGoogle Scholar
Wada, K., (1967) A study of hydroxyl groups in kaolin minerals utilizing selective deuteration and infrared spectroscopy Clay Miner 7 5161.CrossRefGoogle Scholar
Wada, K., Dixon, J. B. and Weed, S. B., (1977) Allophane and imogolite Minerals in Soil Environments Madison, Wisconsin Soil Science Society America 603638.Google Scholar
Wada, K. (1979) Structural formulas of allophane: in VI International Clay Conference 1978, Oxford, Mortland, M. M. and Farmer, V. C., eds., Elsevier, Amsterdam, 537545.Google Scholar
Wada, K. and Okamura, Y., (1977) Measurements of exchange capacities and hydrolysis as means of characterising cation and anion retentions by soils Proceedings of the International Seminar on Soil Environment and Fertility Management in Intensive Agriculture 1977 Japan, Tokyo Society of the Science of Soil and Manure 811815.Google Scholar
Wada, S. and Wada, K., (1977) Density and structure of allophane Clay Miner. 12 289298.CrossRefGoogle Scholar
Ward, J. W. and Rabo, J. A., (1976) IR studies of zeolite surfaces Zeolite Chemistry and Catalysis Washington A.C.S. Monograph 171, American Chemical Society 118284.Google Scholar