Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-23T23:13:43.209Z Has data issue: false hasContentIssue false

Hydrothermal Interaction of Wyoming Bentonite and Opalinus Clay

Published online by Cambridge University Press:  01 January 2024

Kirsten Sauer*
Affiliation:
Los Alamos National Laboratory, EES-14, MS J966, P.O. Box 1663, Los Alamos, NM 87545, USA
Florie Caporuscio
Affiliation:
Los Alamos National Laboratory, EES-14, MS J966, P.O. Box 1663, Los Alamos, NM 87545, USA
Marlena Rock
Affiliation:
Los Alamos National Laboratory, EES-14, MS J966, P.O. Box 1663, Los Alamos, NM 87545, USA
Michael Cheshire
Affiliation:
Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
Carlos Jové-Colón
Affiliation:
Sandia National Laboratories, 1515 Eubank SE, Albuquerque, NM 87123, USA
*
*E-mail address of corresponding author: sauer@lanl.gov

Abstract

Most investigations into clay-mineral stability and new mineral formation within engineered barrier system (EBS) materials for geologic repositories of nuclear waste have focused on temperatures <100°C. In response to the United States Department of Energy’s interest in disposing of waste packages with higher thermal loads, higher temperature (200–300°C) and pressure (~150 bar), long-term (6-week to 6-month), hydrothermal experiments were conducted to evaluate the interaction of Opalinus Clay (wall rock) and Wyoming bentonite (clay buffer) with synthetic Opalinus Clay groundwater. Experiments were conducted in autoclaves using a flexible gold reaction cell with water:rock ratios between 6:1 and 9:1. Run products were characterized in terms of mineralogy and geochemistry. Montmorillonite remained stable at 200 and 300°C; traces of illite-smectite interstratified minerals were observed. Clay minerals in Opalinus Clay experienced significant changes at 300°C, including the formation of illite, illite-smectite, and chlorite-smectite. Montmorillonite illitization within the Wyoming bentonite EBS material was likely limited by the bulk chemistry of the system (i.e. low potassium) and newly formed illite was likely limited to the Opalinus Clay fragments, nucleating on pre-existing illite in the clay rock. Zeolite minerals with compositions between analcime and wairakite formed at 300°C along edges of Opalinus Clay fragments and within the bentonite matrix, but not at 200°C. Aqueous fluids remained undersaturated with respect to quartz in Opalinus Clay ± Wyoming bentonite 300°C experiments, and dissolution and re-precipitation of phases such as kaolinite, calcite, and smectite likely contributed to zeolite formation. These results can be applied to understanding zeolite formation, clay-mineral phase stability, and silica saturation within EBS materials of a high-temperature repository.

Type
Article
Copyright
Copyright © Clay Minerals Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, M., Mäder, U. K., & Waber, H. N. (1999). High-pH alteration of argillaceous rocks: an experimental study. Schweizerische Mineralogische und Petrographische Mitteilungen, 79, 445454.Google Scholar
Benning, L. G., Wilkin, R. T., & Barnes, H. L. (2000). Solubility and stability of zeolites in aqueous solution: II. Calcic clinoptilolite and mordenite. American Mineralogist, 85, 495508. https://doi.org/10.2138/am-2000-0411.CrossRefGoogle Scholar
Bish, D. L., & Aronson, J. L. (1993). Paleogeothermal and paleohydrologic conditions in silicic tuff from Yucca Mountain, Nevada. Clays and Clay Minerals, 41, 148161. https://doi.org/10.1346/CCMN.1993.0410204.CrossRefGoogle Scholar
Bossart, P.J. & Thury, M. (2008). Mont Terri Rock Laboratory: Project, Programme 1996 to 2007 and Results, no. 3. Reports of the Swiss Geological Survey, Wabern.Google Scholar
Bossart, P. & Milnes, A.G. (2017). Mont Terri Rock Laboratory, 20 Years: Two Decades of Research and Experimentation on Claystones for Geological Disposal of Radioactive Waste (Vol. 5): Birkhäuser.Google Scholar
Chermak, J. (1992). Low temperature experimental investigation of the effect of high pH NaOH solutions on the Opalinus Shale, Switzerland. Clays and Clay Minerals, 40, 650658.CrossRefGoogle Scholar
Cheshire, M., Caporuscio, F., Jové-Colón, C., & McCarney, M. (2013). Alteration of clinoptilolite into high-silica analcime within a bentonite barrier system under used nuclear fuel repository conditions. International High–Level Radioactive Waste Management (2013 IHLRWM). Albuquerque, NM.Google Scholar
Cheshire, M. C., Caporuscio, F. A., Rearick, M. S., Jove-Colon, C., & McCarney, M. K. (2014). Bentonite evolution at elevated pressures and temperatures: An experimental study for generic nuclear repository designs. American Mineralogist, 99, 16621675. https://doi.org/10.2138/am.2014.4673.CrossRefGoogle Scholar
Chipera, S. J., & Bish, D. L. (1997). Equilibrium modeling of clinoptilolite-analcime equilibria at Yucca Mountain, Nevada, USA. Clays and Clay Minerals, 45, 226239. https://doi.org/10.1346/CCMN.1997.0450211.CrossRefGoogle Scholar
Chipera, S. J., & Bish, D. L. (2002). FULLPAT: a full-pattern quantitative analysis program for X-ray powder diffraction using measured and calculated patterns. Journal of Applied Crystallography, 35, 744749. https://doi.org/10.1107/S0021889802017405.CrossRefGoogle Scholar
Chung, F. H. (1974). Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis. Journal of Applied Crystallography, 7, 519525. https://doi.org/10.1107/S0021889874010375.CrossRefGoogle Scholar
Dohrmann, R., & Kaufhold, S. (2014). Cation exchange and mineral reactions observed in MX 80 buffer samples of the Prototype repository in situ experiment in Äspö, Sweden. Clays and Clay Minerals, 62, 357373. https://doi.org/10.1346/CCMN.2014.0620501.CrossRefGoogle Scholar
Dohrmann, R., Kaufhold, S., & Lundqvist, B. (2013). The role of clays for safe storage of nuclear waste. Pp. 677710 in: Developments in Clay Science (Vol. 5). Elsevier. doi: https://doi.org/10.1016/B978-0-08-098259-5.00024-X.Google Scholar
Eberl, D., Velde, B., & McCormick, T. (1993). Synthesis of illitesmectite from smectite at earth surface temperatures and high pH. Clay Minerals, 28, 4960. https://doi.org/10.1180/claymin.1993.028.1.06.CrossRefGoogle Scholar
Fernández, A. M., Kaufhold, S., Sánchez-Ledesma, D. M., Rey, J. J., Melón, A., Robredo, L. M., Fernández, S., Labajo, M. A., & Clavero, M. A. (2018). Evolution of the THC conditions in the FEBEX in situ test after 18 years of experiment: Smectite crystallochemical modifications after interactions of the bentonite with a C-steel heater at 100°C. Applied Geochemistry, 98, 152171. https://doi.org/10.1016/j.apgeochem.2018.09.008.CrossRefGoogle Scholar
Ferrage, E., Vidal, O., Mosser-Ruck, R., Cathelineau, M., & Cuadros, J. (2011). A reinvestigation of smectite illitization in experimental hydrothermal conditions: Results from X-ray diffraction and transmission electron microscopy. American Mineralogist, 96, 207223. https://doi.org/10.2138/am.2011.3587.CrossRefGoogle Scholar
Gailhanou, H., Lerouge, C., Debure, M., Gaboreau, S., Gaucher, E. C., Grangeon, S., Grenèche, J. M., Kars, M., Madé, B., Marty, N. C. M., & Warmont, F. (2017). Effects of a thermal perturbation on mineralogy and pore water composition in a clay-rock: an experimental and modeling study. Geochimica et Cosmochimica Acta, 197, 193214. https://doi.org/10.1016/j.gca.2016.10.004.CrossRefGoogle Scholar
Greenberg, H., Wen, J., & Buscheck, T. (2013). Scoping Thermal Analysis of Alternative Dual-Purpose Canister Disposal Concepts. Lawrence Livermore National Laboratory. LLNL-TR-639869.CrossRefGoogle Scholar
Guillaume, D., Neaman, A., Cathelineau, M., Mosser-Ruck, R., Peiffert, C., & Abdelmoula, M. (2003). Experimental synthesis of chlorite from smectite at 300°C in the presence of metallic Fe. Clay Minerals, 38, 281302. https://doi.org/10.1180/0009855033830096.CrossRefGoogle Scholar
Hadi, J., Wersin, P., & Serneels, V. (2019). Eighteen years of steel–bentonite interaction in the FEBEX in situ test at the Grimsel Test Site in Switzerland. Clays and Clay Minerals, 67, 111. https://doi.org/10.1007/s42860-019-00012-5.CrossRefGoogle Scholar
Heimann, R. B. (1993). Brønsted acidification observed during hydrothermal treatment of a calcium montmorillonite. Clays and Clay Minerals, 41, 718725. https://doi.org/10.1346/CCMN.1993.0410610.CrossRefGoogle Scholar
Hofmann, H., Bauer, A., & Warr, L. N. (2004). Behavior of smectite in strong salt brines under conditions relevant to the disposal of low-to medium-grade nuclear waste. Clays and Clay Minerals, 52, 1424. https://doi.org/10.1346/CCMN.2004.0520102.CrossRefGoogle Scholar
Honty, M., Wang, L., Osacký, M., Uhlík, P., Czímerová, A., & Madejová, J. (2012). Experimental interactions of the Opalinus Clay and Boom Clay with various repository relevant solutions at 90° C under closed conditions. Applied Clay Science, 59, 5063. https://doi.org/10.1016/j.clay.2012.02.011.CrossRefGoogle Scholar
Johannesson, L. E., Börgesson, L., Goudarzi, R., Sandén, T., Gunnarsson, D., & Svemar, C. (2007). Prototype repository: A full scale experiment at Äspö HRL. Physics and Chemistry of the Earth, Parts A/B/C, 32, 5876. https://doi.org/10.1016/j.pce.2006.04.027.CrossRefGoogle Scholar
Johnston, R.M. & Miller, H.G. (1984). The effect of pH on the stability of smectite (No. AECL–8366). Atomic Energy of Canada Ltd.Google Scholar
Jove-Colon, C.F., Hammond, G.E., Kuhlman, K.L., Zheng, L., Kim, K., & Xu, H. (2016). Evaluation of used fuel disposition in claybearing rock. Sandia National Laboratories (SNL-NM).Google Scholar
Kasbohm, J., Herbert, H. J., & Henning, K. H. (2005). Short- and long term stability of selected bentonites in high saline solutions, International Symposium on Large-scale Fields in Granite, Sitges, Barcelona, Spain, November 12–14, 2003. Code, 88404, 231240.Google Scholar
Kaufhold, S., & Dohrmann, R. (2010). Stability of bentonites in salt solutions: II. Potassium chloride solution—Initial step of illitization? Applied Clay Science, 49, 98107. https://doi.org/10.1016/j.clay.2010.04.009.CrossRefGoogle Scholar
Kaufhold, S., & Dohrmann, R. (2009). Stability of bentonites in salt solutions | sodium chloride. Applied Clay Science, 45, 171177. https://doi.org/10.1016/j.clay.2009.04.011.CrossRefGoogle Scholar
Leupin, O. X., Birgersson, M., Karnland, O., Korkeakoski, P., Mäderm, U. K., Sellin, P., & Wersin, P. (2014). Montmorillonite stability under nearfield conditions. Nagra Tech. Rep. NTB, 14–12.Google Scholar
Liou, J. G., de Capitani, C., & Frey, M. (1991). Zeolite equilibria in the system CaAl2Si2O8–NaAlSi3O8–SiO2–H2O. New Zealand Journal of Geology and Geophysics, 34, 293301. https://doi.org/10.1080/00288306.1991.9514467.CrossRefGoogle Scholar
Madsen, F. (1998). Clay mineralogical investigations related to nuclear waste disposal. Clay Minerals, 33, 109129. https://doi.org/10.1180/000985598545318.CrossRefGoogle Scholar
Martin, P. L., Barcala, J. M., & Huertas, F. (2006). Large-scale and long-term coupled thermo-hydro-mechanic experiments with bentonite: the FEBEX mock-up test. Journal of Iberian Geology, 32, 259282.Google Scholar
Meunier, A., Velde, B., & Griffault, L. (1998). The reactivity of bentonites: a review. An application to clay barrier stability for nuclear waste storage. Clay Minerals, 33, 187196. https://doi.org/10.1180/000985598545462.CrossRefGoogle Scholar
Moore, D. M., & Reynolds, R. C. (1997). X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford, UK: Oxford University Press.Google Scholar
Mosser-Ruck, R., Cathelineau, M., Baronnet, A., & Trouiller, A. (1999). Hydrothermal reactivity of K-smectite at 300°C and 100 bar: dissolution-crystallization process and non-expandable dehydrated smectite formation. Clay Minerals, 34, 275290.CrossRefGoogle Scholar
Mosser-Ruck, R., Cathelineau, M., Guillaume, D., Charpentier, D., Rousset, D., & Barres, O. (2010). Effects of temperature, pH, and iron/clay and liquid/clay ratios on experimental conversion of dioctahedral smectite to berthierine, chlorite, vermiculite, or saponite. Clays and Clay Minerals, 58, 280291. https://doi.org/10.1346/CCMN.2010.0580212.CrossRefGoogle Scholar
Mosser-Ruck, R., Pignatelli, I., Bourdelle, F., Abdelmoula, M., Barres, O., & Guillaume, D. (2016). Contribution of long-term hydrothermal experiments for understanding the smectite-to-chlorite conversion in geological environments. Contributions to Mineralogy and Petrology, 171. https://doi.org/10.1007/s00410-016-1307-z.CrossRefGoogle Scholar
Müller, H.R. et al. (2018) Implementation of the full-scale emplacement (FE) experiment at the Mont Terri rock laboratory. In: Mont Terri Rock Laboratory, 20 Years (Bossart, P. and Milnes, A., editors). Swiss Journal of Geosciences Supplement, vol 5. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-70458-6_15CrossRefGoogle Scholar
NAGRA (2002). Project Opalinus Clay: safety report: demonstration of disposal feasibility for spent fuel, vitrified high-level waste and long-lived intermediate-level waste (Entsorgungsnachweis): Nagra.Google Scholar
Neuhoff, P. S., & Ruhl, L. S. (2006). Mechanisms and geochemical significance of Si–Al substitution in zeolite solid solutions. Chemical Geology, 225, 373387. https://doi.org/10.1016/j.chemgeo.2005.08.029.CrossRefGoogle Scholar
Pearson, F. (2002). Benken reference water chemistry. Unpubl. Nagra Int. Report. Nagra, Wettingen, Switzerland.Google Scholar
Pearson, F., Arcos, D., Boisson, J., Fernandez, A., Gäbler, H., & Gaucher, E. (2003). Mont Terri project—Geochemistry of water in the Opalinus clay formation at the Mont Terri Rock Laboratory. Synthesis Report. Geol. Rep. no. 5. Swiss National Hydrological and Geological Survey, Ittigen-Bern, Switzerland. Mont Terri project—Geochemistry of water in the Opalinus clay formation at the Mont Terri Rock Laboratory. Synthesis Report. Geol. Rep. no. 5. Swiss National Hydrological and Geological Survey, Ittigen-Bern, Switzerland., -.Google Scholar
Pouchou, J. & Pichoir, F. (1984). PAP correction procedure for improved quantitative microanalysis. (pp. 104106): San Francisco Press San Francisco, CA.Google Scholar
Pusch, R. (2001). The microstructure of MX-80 clay with respect to its bulk physical properties under different environmental conditions. Swedish Nuclear Fuel and Waste Management Co.Google Scholar
Pusch, R. (1979). Highly compacted sodium bentonite for isolating rock-deposited radioactive waste products. Nuclear Technology, 45, 153157.CrossRefGoogle Scholar
Pusch, R. & Kasbohm, J. (2002). Alteration of MX-80 by hydrothermal treatment under high salt content conditions. Swedish Nuclear Fuel and Waste Management Co.Google Scholar
Pusch, R., & Madsen, F. T. (1995). Aspects on the illitization of the Kinnekulle bentonites. Clays and Clay Minerals, 43, 261270. https://doi.org/10.1346/CCMN.1995.0430301.CrossRefGoogle Scholar
Pusch, R., Takase, H., & Benbow, S. (1998). Chemical processes causing cementation in heat-affected smectite-the Kinnekulle bentonite. Swedish Nuclear Fuel and Waste Management Co.Google Scholar
Rimstidt, J. D., & Barnes, H. L. (1980). The kinetics of silica-water reactions. Geochimica et Cosmochimica Acta, 44, 16831699. https://doi.org/10.1016/0016-7037(80)90220-3.CrossRefGoogle Scholar
Savage, D., Walker, C., Arthur, R., Rochelle, C., Oda, C., & Takase, H. (2007). Alteration of bentonite by hyperalkaline fluids: A review of the role of secondary minerals. Physics and Chemistry of the Earth, Parts A/B/C, 32, 287297. https://doi.org/10.1016/j.pce.2005.08.048.CrossRefGoogle Scholar
Savage, D., Wilson, J., Benbow, S., Sasamoto, H., Oda, C., & Walker, C. (2019). Natural systems evidence for the effects of temperature and the activity of aqueous silica upon montmorillonite stability in clay barriers for the disposal of radioactive wastes. Applied Clay Science, 179, 105146. https://doi.org/10.1016/j.clay.2019.105146.CrossRefGoogle Scholar
Sellin, P., & Leupin, O. (2014). The use of clay as an engineered barrier in radioactive waste management – a review. Clays and Clay Minerals, 61, 477498. https://doi.org/10.1346/CCMN.2013.0610601.CrossRefGoogle Scholar
Seyfried, W. Jr (1987). Rocking autoclaves for hydrothermal experiments. II. The flexible reaction-cell system. Hydrothermal Experimental Techniques, 216239.Google Scholar
Smyth, J. (1982). Zeolite stability constraints on radioactive waste isolation in zeolite-bearing volcanic rocks. The Journal of Geology, 90, 195202.CrossRefGoogle Scholar
Taubald, H., Bauer, A., Schäfer, T., Geckeis, H., Satir, M., & Kim, J. (2000). Experimental investigation of the effect of high-pH solutions on the Opalinus Shale and the Hammerschmiede Smectite. Clay Minerals, 35, 515524. https://doi.org/10.1180/000985500546981.CrossRefGoogle Scholar
Wersin, P., Johnson, L. H., & McKinley, I. G. (2007). Performance of the bentonite barrier at temperatures beyond 100°C: A critical review. Physics and Chemistry of the Earth, Parts A/B/C, 32, 780788. https://doi.org/10.1016/j.pce.2006.02.051.CrossRefGoogle Scholar
Wieczorek, K., Gaus, I., Mayor, J. C., Schuster, K., García-Siñeriz, J.-L., & Sakaki, T. (2017). In-situ experiments on bentonite-based buffer and sealing materials at the Mont Terri rock laboratory (Switzerland). Swiss Journal of Geoscience., 110, 253268. https://doi.org/10.1007/s00015-016-0247-y.CrossRefGoogle Scholar
Wilkin, R., & Barnes, H. (1998). Solubility and stability of zeolites in aqueous solution: I. Analcime, Na-, and K-clinoptilolite. American Mineralogist, 83, 746761. https://doi.org/10.2138/am-1998-7-807.CrossRefGoogle Scholar
Wirsching, U. (1981). Experiments on the hydrothermal formation of calcium zeolites. Clays and Clay Minerals, 29, 171183. https://doi.org/10.1346/CCMN.1981.0290302.CrossRefGoogle Scholar
Whitney, G. (1990). Role of water in the smectite-to-illite reaction. Clays and Clay Minerals, 38, 343350.CrossRefGoogle Scholar
Wolery, T.J. & Jarek, R.L. (2003). EQ3/6, Version 8.0: Software User's Manual. Albuquerque, Sandia National Laboratories: 376 pp.Google Scholar
Wolery, T.J. & Jové Colón, C.F. (2007). Qualification of Thermodynamic Data for Geochemical Modeling of Mineral–Water Interactions in Dilute Systems (ANL-WIS-GS-000003 REV 01). Las Vegas, Nevada, Sandia National Laboratories; OCRWM Lead Laboratory for Repository Systems: 412 pp.Google Scholar
Zheng, L., Rutqvist, J., Birkholzer, J. T., & Liu, H. H. (2015). On the impact of temperatures up to 200°C in clay repositories with bentonite engineer barrier systems: A study with coupled thermal, hydrological, chemical, and mechanical modeling. Engineering Geology, 197, 278295. https://doi.org/10.1016/j.enggeo.2015.08.026.CrossRefGoogle Scholar
Supplementary material: File

Sauer et al. supplementary material
Download undefined(File)
File 1.2 MB