Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-26T18:17:04.008Z Has data issue: false hasContentIssue false

High-Temperature, Resistant, Argillite-Based, Alkali-Activated Materials with Improved Post-Thermal Treatment Mechanical Strength

Published online by Cambridge University Press:  01 January 2024

Tohoue Monique Tognonvi
Affiliation:
Unité de Formation et de Recherche des Sciences Biologiques, Université Peleforo Gon Coulibaly, BP 1328, Korhogo, Côte d’Ivoire
Svetlana Petlitckaia
Affiliation:
Institut de Recherche sur les Céramiques (IRCER), 12 rue Atlantis, 87068, Limoges Cedex, France
Ameni Gharzouni
Affiliation:
Institut de Recherche sur les Céramiques (IRCER), 12 rue Atlantis, 87068, Limoges Cedex, France
Myriam Fricheteau
Affiliation:
Institut de Recherche sur les Céramiques (IRCER), 12 rue Atlantis, 87068, Limoges Cedex, France
Nathalie Texier-Mandoki
Affiliation:
Agence Nationale pour la Gestion des Déchets Radioactifs, 1–7 rue Jean-Monnet, Parc de la Croix-Blanche, 92298, Châtenay-Malabry Cedex, France
Xavier Bourbon
Affiliation:
Agence Nationale pour la Gestion des Déchets Radioactifs, 1–7 rue Jean-Monnet, Parc de la Croix-Blanche, 92298, Châtenay-Malabry Cedex, France
Sylvie Rossignol*
Affiliation:
Institut de Recherche sur les Céramiques (IRCER), 12 rue Atlantis, 87068, Limoges Cedex, France
*
*E-mail address of corresponding author: sylvie.rossignol@unilim.fr

Abstract

Fire resistance performance is one of the most important requirements in geological storage conditions in order to improve the resistance of storage packages to high thermal constraints (in the case of a fire for example). With the need to develop new fire-resistant materials, the aim of the present study was to develop fire-resistant geopolymer binders based on Callovo-Oxfordian (COx) argillite. Two types of kaolin with different degrees of purity were mixed with argillite in various proportions. These mixtures were calcined at 600 or 750°C. In order to assess the fire resistance of activated materials, thermal treatment at 1000°C was performed. The compressive strength and mineralogical composition of the samples were investigated before and after heat treatment. The results showed that the addition of argillite improved significantly the thermomechanical properties of kaolin-based geopolymers containing impurities, especially the mixture containing 67% argillite and calcined at 750°C. This phenomenon was not observed for the pure-kaolin geopolymer. Improvement of fire resistance was due to the formation in situ of leucite and zeolite-type phases (KAlSi2O6 and KAlSiO4) and of wollastonite (CaSiO3) at high temperature, which is linked to the Ca available in the raw materials.

Type
Article
Copyright
Copyright © Clay Minerals Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Autef, A., Joussein, E., Poulesquen, A., Gasgnier, G., Pronier, S., Sobrados, I., Sanz, J., & Rossignol, S. (2013). Role of metakaolin dehydroxylation in geopolymer synthesis. Powder Technology, 250, 3339.CrossRefGoogle Scholar
Autef, A., Joussein, E., Gasgnier, G., & Rossignol, S. (2016). Feasibility of aluminosilicate compounds from various raw materials: chemical reactivity and mechanical properties. Powder Technology, 301, 169178.CrossRefGoogle Scholar
Azim, E.A., Ming, L.Y., Yong, H.C., Hussin, K., & Aziz, I.H. (2016). Review of dolomite as precursor of geopolymer materials. MATEC Web of Conferences, 7.CrossRefGoogle Scholar
Barbosa, V. F. F., & MacKenzie, K. J. D. (2003). Synthesis and thermal behaviour of potassium sialate geopolymers. Materials Letters, 57, 14771482.CrossRefGoogle Scholar
Bernal, S. A., Rodriguez, E. D., Mejιade Gutierrez, R., Gordillo, M., & Provis, J. L. (2011). Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. Journal of Materials Science, 46, 54775486.CrossRefGoogle Scholar
Buchwald, A., Hohman, M., Posern, K., & Brendler, E. (2009a). The suitability of thermally activated illite-smectite clay as raw material for geopolymer binders. Applied Clays Science, 46, 300304.CrossRefGoogle Scholar
Buchwald, A., Vicent, M., Kriegel, R., Kaps, C., Monzó, M., & Barba, A. (2009b). Geopolymeric binders with different fine fillers — phase transformations at high temperatures. Applied Clay Science, 46, 190195.CrossRefGoogle Scholar
Chatterjee, M. K., & Lahiri, D. (2014). Estimation of free calcium hydroxide present in hydrated cements by differential thermogravimetric analysis. Transactions of the Indian Ceramic Society, 23, 198202.CrossRefGoogle Scholar
Cheng, T. W., & Chiu, J. P. (2003). Fire-resistant geopolymer produced by granulated blast furnace slag. Minerals Engineering, 16, 205210.CrossRefGoogle Scholar
Davidovits, J. (1991). Geopolymers, inorganic polymeric new materials. Journal of Thermal Analysis and Calorimetry, 37, 16331656.CrossRefGoogle Scholar
Dupuy, C., Gharzouni, A., Texier-Mandoki, N., Bourbon, X., & Rossignol, S. (2018a). Alkali-activated materials based on Callovo-Oxfordian argillite: formation, structure and mechanical properties. Journal of Ceramic Science and Technology, 09(2), 127140.Google Scholar
Dupuy, C., Gharzouni, A., Sobrados, I., Texier-Mandoki, N., Bourbon, X., & Rossignol, S. (2018b). Thermal resistance of argillite based alkali-activated materials. Part 2: identification of the formed crystalline phases. Materials Chemistry and Physics, 218, 262271.CrossRefGoogle Scholar
Duxson, P. (2006). The structure and thermal evolution of metakaolin geopolymers. PhD thesis, University of Melbourne, 355 pp.Google Scholar
Fernandez-Jimenez, A., Palomo, A., Pastor, J. Y., & Martin, A. (2008). New cementitious materials based on alkali-activated fly ash: performance at high temperatures. Journal of the American Ceramic Society, 90, 33083314.CrossRefGoogle Scholar
Foldvari, M. (2011). Handbook of thermogravimetric system of minerals and its use in geological practice. Occasional Papers of the Geological Institute of Hungary, Budapest, Hungary.Google Scholar
Gharzouni, A. (2016). Contrôle de l'attaque des sources aluminosilicates par la compréhension des solutions alcalines. PhD thesis, Université de Limoges, Limoges, France, 227 pp.Google Scholar
Gharzouni, A., Dupuy, C., Sobrados, I., Joussein, E., Texier-Mandoki, N., Bourbon, X., & Rossignol, S. (2017). The effect of furnace and flash heating on COx argilite for the synthesis of alkali-activated binders. Journal of Cleaner Production, 156, 670678.CrossRefGoogle Scholar
Gharzouni, A., Ouamara, L., Sobrados, I., & Rossignol, S. (2018). Alkali-activated materials from different aluminosilicate sources: effect of aluminum and calcium availability. Journal of Non-Crystalline Solids, 484, 1425.CrossRefGoogle Scholar
Hamann, C., Blasing, S., Hecht, L., Schaffer, S., Deutsch, A., Osterholz, J., & Lexow, B. (2018). The reaction of carbonates in contact with laser-generated, superheated silicate melts: constraining impact metamorphism of carbonate-bearing target rocks. Meteoritics & Planetary Science, 53, 16441686.CrossRefGoogle Scholar
Karamanov, A., & Pelino, M. (2008). Induced crystallization porosity and properties of sintereds diopside and wollastonite glass-ceramics. Journal of the European Ceramic Society, 28, 555562.CrossRefGoogle Scholar
Kremenovic, A., Lazic, B., Kruger, H., Tribus, M., & Vulic, P. (2013). Monoclinic structure andnon-stoichiometry of ‘KAlSiO4-O1‘. Acta Crystallographica C, 69, 334336.CrossRefGoogle ScholarPubMed
Lodeiro, G., Fernandez-Jimenez, A., & Palomo, A. (2013). Hydration kinetics in hybrid binders: early reaction stages, I. Cement and Concrete Compositions, 39, 8292.CrossRefGoogle Scholar
Lvov, B. V., Novichikhin, A. V., & Dyakov, A. O. (1998). Mechanism of thermal decomposition of magnesium hydroxide. Thermochimica Acta, 315, 135143.CrossRefGoogle Scholar
Miranda-Hernandez, J., Ortega-Avilés, M., Herrera-Hernández, H., González-Morán, C., García-Pacheco, G., & Rocha-Rangel, E. (2018). Refractory ceramics synthesis by solid-state reaction between CaCO3 (mollusk shell) and Al2O3 powders. Journal Ceramics-Silikaty, 4, 355363.CrossRefGoogle Scholar
Montes, H. G., Duplay, J., Martinez, L., Escoffier, S., & Rousset, D. (2004). Structural modification of callovo-oxfordian argillite under hydratation/dehydratation condition. Applied Clay Science, 25, 187194.CrossRefGoogle Scholar
Perera, D. S., Vance, E. R., Finnie, K. S., Blackford, M. G., Hanna, J. V., Cassidy, D. J., & Nicholson, C. L. (2005). Disposition of water in metakaolinite-based geopolymers. Ceramic Transactions, 185, 225236.Google Scholar
Peyne, J., Gautron, J., Doudeau, J., Joussein, E., & Rossignol, S. (2017). Influence of calcium addition on calcined brick clay based geopolymers: a thermal and FTIR spectroscopy study. Construction and Building Materials, 152, 794803.CrossRefGoogle Scholar
Rovnanik, P., & Safrankova, K. (2016). Thermal Behavior of Metakaolin/fly ash geopolymer with chamotte aggregate. Materials, 9, 535.CrossRefGoogle ScholarPubMed
Shatskiy, A., Litasov, K. D., Palyanov, Y. N., & Ohtani, E. (2016). Phase relations on the K2CO3-CaCO3-MgCO3 join at 6 GPa and 900–1400°C: implications for incipient melting in carbonated mantle domains. American Mineralogist, 101, 437447.CrossRefGoogle Scholar
Smith, J. V., & Tuttle, O. F. (1957). The nepheline-kalsilite system: I. X-ray data for the crystalline phases. American Journal of Science, 255, 282305.Google Scholar
Swamy, V., & Dubrovinsky, L. S. (1997). Thermodynamic data for the phases in the CaSiO3 system. Geochimica et Cosmochimica Acta, 61, 1811191.CrossRefGoogle Scholar
Trindale, A. C. C., Silva, F. A., Alcamand, H. A., & Borges, P. H. R. (2017). On the mechanical behaviour of metakaolin based geopolymer under elevated temperature. Journal of Materials Research, 20, 265272.CrossRefGoogle Scholar
Wang, Y., Hu, S., & He, Z. (2019). Mechanical and fracture properties of fly ash geopolymer concrete addictive with calcium aluminate cement. Materials (Basel), 12, 2982.CrossRefGoogle ScholarPubMed
Yao, X., Zhang, Z., Zhu, H., & Chen, Y. (2009). Geopolymerization process of alkali-metakaolinite characterized by isothermal calrimetry. Thermochimica Acta, 493, 4954.CrossRefGoogle Scholar
Yip, C. K., Lukey, G. C., & van Deventer, J. S. J. (2005). The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cement and Concrete Research, 35, 16881697.CrossRefGoogle Scholar
Yu, Q., Sawayama, K., Sugita, S., Shoya, M., & Isojima, Y. (1999). The reaction between rice husk ash and Ca(OH)2 solution and the nature of its product. Cement and Concrete Research, 29, 3743.CrossRefGoogle Scholar
Zhang, H., Kodur, V., CaO, L., & Qi, S. (2014). Fiber reinforced geopolymers for fire resistance applications. Procedia Engineering, 71, 153158.CrossRefGoogle Scholar
Supplementary material: File

Tognonvi et al. supplementary material
Download undefined(File)
File 18.8 KB