Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-25T04:50:46.342Z Has data issue: false hasContentIssue false

Hard and Soft Acid-Base Model Applied to Bivalent Cation Selectivity on a 2:1 Clay Mineral

Published online by Cambridge University Press:  28 February 2024

M. Auboiroux
Affiliation:
UMR CNRS-Université d'Orléans 6530, Ecole Supérieure de l'Energie et des Matériaux, Rue Léonard de Vinci, 45072 Orleans, CEDEX 2, France CNRS-Université d'Orléans, Centre de Recherche sur la Matiére Divisée, 1B Rue de la Férollerie, 45071 Orleans, CEDEX 2, France
F. Melou
Affiliation:
UMR CNRS-Université d'Orléans 6530, Ecole Supérieure de l'Energie et des Matériaux, Rue Léonard de Vinci, 45072 Orleans, CEDEX 2, France
F. Bergaya
Affiliation:
CNRS-Université d'Orléans, Centre de Recherche sur la Matiére Divisée, 1B Rue de la Férollerie, 45071 Orleans, CEDEX 2, France
J. C. Touray
Affiliation:
UMR CNRS-Université d'Orléans 6530, Ecole Supérieure de l'Energie et des Matériaux, Rue Léonard de Vinci, 45072 Orleans, CEDEX 2, France

Abstract

We applied the hard and soft acid-base (HSAB) model (Xu and Harsh 1990a, 1990b) to bivalent cation exchange on a purified Ca-montmorillonite. As a result, a satisfactory model is proposed to describe the gradual selectivity of exchange with Ca for 4 of the 6 metals studied (Cd, Cu, Pb, Zn). The selectivity is predicted as a function of the differences of electronegativity and softness of the metals. The deviation of Ni and Co data from the predicting model is interpreted in terms of hydration (Ni and Co being the most strongly hydrated ions). The fitting parameters of the model, α and β, are related to the electronegativity and softness characteristics of the surface, respectively. Their ratio gives information on the nature of bonding. Results suggest that covalent bonding modifies electrostatic interactions, which in turn affect selectivity, with an increasing influence of covalent bondings in the order: Pb < Cd < Zn < Cu.

To balance the lack of representativity of the model for the small molar fraction (NM), we propose to associate to the HSAB model an equation describing the variation of the Vanselow selectivity coefficient as a function of the molar fraction of metal on clay.

Type
Research Article
Copyright
Copyright © 1998, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auboiroux, M. Baillif, P. Touray, J.C. and Bergaya, F., 1996 Fixation of Zn2+ and Pb2+ by a Ca-montmorillonite in brines and dilute solutions: Preliminary results Appl Clay Sci 11 117126 10.1016/S0169-1317(96)00014-2.CrossRefGoogle Scholar
Babcock, K.L. and Duckart, E.C., 1980 The standard state for exchangeable cations Soil Sci 130 6467 10.1097/00010694-198008000-00003.CrossRefGoogle Scholar
Benjamin, M.M. and Leckie, J.O., 1981 Multiple-site adsorption of Cd, Cu, Zn and Pb on amourphous iron oxyhydroxyde J Colloid Interface Sci 79 209221 10.1016/0021-9797(81)90063-1.CrossRefGoogle Scholar
Bergaya, F. and Vayer, M., 1997 CEC of clays: Measurement by adsorption of a copper ethylenediamine complex Appl Clay Sci 12 275280 10.1016/S0169-1317(97)00012-4.CrossRefGoogle Scholar
Bertin, C. and Bourg, A.C.M., 1995 Trends in the heavy metal content (Cd, Pb, Zn) of river sediments in the drainage basin of smelting activities Wat Res 29 17291736 10.1016/0043-1354(94)00327-4.CrossRefGoogle Scholar
Bleam, W.F., 1990 Electrostatic potential at the basal (001) surface of talc and pyrophyllite as related to tetrahedral sheet distortions Clays Clay Miner 38 522526 10.1346/CCMN.1990.0380509.CrossRefGoogle Scholar
Bleam, W.F., 1990 The nature of cation-substitution sites in phyllosilicates Clays Clay Miner 38 527536 10.1346/CCMN.1990.0380510.CrossRefGoogle Scholar
Bleam, W.F., 1993 Atomic theorie of phyllosilicates: Quantum chemistry, statistical mechanics, electrostatic theory, and crystal chemistry Rev Geophys 31 5173 10.1029/92RG01823.CrossRefGoogle Scholar
Brigatti, M.F. Corradini, F. Franchini, G.C. Mazzoni, S. Medici, L. and Poppi, L., 1995 Interaction between montmorillonite and pollutants from industrial waste-water: Exchange of Zn2+ and Pb2+ from aqueous solutions Appl Clay Sci 9 383395 10.1016/0169-1317(94)00027-N.CrossRefGoogle Scholar
Briiemmer, G.W. Gerth, J. and Tiller, K.G., 1988 Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. I. Adsorption and difusion of metals J Soil Sci 39 3752 10.1111/j.1365-2389.1988.tb01192.x.CrossRefGoogle Scholar
Lide, D.R., 1997 CRC Handbook of Chemistry and Physics 78th edition Boca Raton, FL CRC Pr..Google Scholar
Delville, A., 1991 Modeling the clay-water interface Langmuir 7 547555 10.1021/la00051a022.CrossRefGoogle Scholar
Eisenman, G., 1962 Cation selective glass electrodes and their mode of operation Biophys J. 2 259323 10.1016/S0006-3495(62)86959-8.CrossRefGoogle ScholarPubMed
Farrah, H. Hatton, D. and Pickering, W.F., 1980 The affinity of metal ions for clay surfaces Chem Geol 28 5568 10.1016/0009-2541(80)90035-2.CrossRefGoogle Scholar
Fripiat, J.J. Cloos, P. and Poncelet, A., 1965 Comparaison entre les propriétés d’échange de la montmorillonite et d’une résine vis-à-vis des cations alcalins et alcalino-terreux:, I.-Réversibilité des processus Bull Soc Chim France 208215.Google Scholar
Gaines, G.L. and Thomas, H.C., 1953 Adsorption studies on clay mineral: II. A formulation of thermodynamics of exchange adsorption J Chem Phys 21 714718 10.1063/1.1698996.CrossRefGoogle Scholar
Godfrin, J.M. Cloos, P. V. and Bladel, R., 1989 Sélectivité des échangés ioniques Ca-Cu et Ca-Zn dans quelques sols belges Pedol XXXIX–1 89110.Google Scholar
Goldberg, S. and Glaubig, R.A., 1986 Boron adsorption and silicon release by the clay minerals kaolinite, montmorillonite, and illite Soil Sci Soc Am J 50 14421448 10.2136/sssaj1986.03615995005000060013x.CrossRefGoogle Scholar
Gorgeon, L., 1994 Contribution à la modélisation physicochimique de la rétention de radioéléments a vie longue par des matériaux argileux .Google Scholar
Guse, M.P., 1981 An atoms in molecules approach to density functional theory J Chem Phys 75 828833 10.1063/1.442126.CrossRefGoogle Scholar
Güven, N., Güven, N. and Pollastro, R.M., 1992 Molecular aspects of clay-water interactions Clay-water interface and its rheological implications Boulder, CO Clay Miner Soc. 179.Google Scholar
Halen, H. Van Bladel, R. and Cloos, P., 1991 Relations pH-adsorption du cuivre, du zinc et du cadmium pour quelques sols et minéraux argileux Pedol XL–1 4768.Google Scholar
Helios Rybicka, E. Calmano, W. and Breeger, A., 1995 Heavy metal sorption/desorption on competing clay minerals; An experimental study Appl Clay Sci 9 369381 10.1016/0169-1317(94)00030-T.CrossRefGoogle Scholar
Helios Rybicka, E. and Kyziol, J., 1991 Clays and clay minerals as the natural barries for heavy metals in pollution mech anisms—Illustrated by Polish rivers and soils Mitt Ôsterr Geol Ges 83 163176.Google Scholar
Hewitt, C.N. and Rashed, M.B., 1992 Removal rates of selected pollutants in the runoff waters from a major rural highway Wat Res 26 311319 10.1016/0043-1354(92)90028-3.CrossRefGoogle Scholar
Hirsch, D. Nir, S. and Banin, A., 1989 Prediction of cadmium complexation in solution and adsorption to montmorillonite Soil Sci Soc Am J 53 716721 10.2136/sssaj1989.03615995005300030012x.CrossRefGoogle Scholar
Inskeep, W.P. and Baham, J., 1983 Adsorption of Cd(II) and Cu(II) by Na-montmorillonite at low surface coverage Soil Sci Soc Am J 47 660665 10.2136/sssaj1983.03615995004700040011x.CrossRefGoogle Scholar
John, M.K. Van Laerhaven, C.J. and Cross, C.H., 1975 Cadmium, lead and zinc accumulation in soil near a smelter complex Environ Lett 10 2535 10.1080/00139307509435805.CrossRefGoogle Scholar
Kanungo, S.B., 1994 Adsortion of cations on hydrous oxides of iron J Colloid Interface Sci 162 93102 10.1006/jcis.1994.1013.CrossRefGoogle Scholar
Klopman, G., 1968 Chemical reactivity and the concept of charge-and-frontier controlled reaction J Am Chem Soc 90 223234 10.1021/ja01004a002.CrossRefGoogle Scholar
Langmuir, D., 1997 Aqueous environmental geochemistry New York Prentice-Hall.Google Scholar
Lee, P.K. Baillif, P. Touray, J.C. Lepiller, M. and Gallet, M., 1996 Un système de décantation-filtration des eaux pluviales dans le domaine autoroutier (A71) Rev Gén Rout et Aérod 741 2430.Google Scholar
Lee, P.K. Touray, J.C. Baillif, P. and Ildefonse, J.P., 1997 Heavy metal contamination of settling particles in a retention pond along the A-71 motorway in Sologne, France Sci Tot Environ 201 115 10.1016/S0048-9697(97)84048-X.CrossRefGoogle Scholar
Liu, J. Howard, S.M. and Han, K.N., 1993 Adsorption behavior of cadmium and zinc ions on oxide/water interfaces Langmuir 9 36353639 10.1021/la00036a046.CrossRefGoogle Scholar
Makov, G., 1995 Chemical hardness in density functional theory J Phys Chem 99 93379339 10.1021/j100023a006.CrossRefGoogle Scholar
Maza-Rodriguez, J. Oliver-Pastor, P. Bruque, S. and Jimenez-Lopez, A., 1992 Exchange selectivity of lanthanide ions in montmorillonite Clay Miner 27 8189 10.1180/claymin.1992.027.1.08.CrossRefGoogle Scholar
Misono, M. Ochiai, E. Saito, Y. and Yoneda, Y., 1967 A new dual parameter scale for the strength of Lewis acids and bases with the evaluation of their softness J Inorg Nucl Chem 29 26852691 10.1016/0022-1902(67)80006-X.CrossRefGoogle Scholar
Nagle, J.K., 1990 Atomic polarizability and electronegativity J Am Chem Soc 112 47414747 10.1021/ja00168a019.CrossRefGoogle Scholar
Nir, S., 1986 Specific and nonspecific cation adsorption to clays: Solution concentrations and surface potentials Soil Sci Soc Am J 50 5257 10.2136/sssaj1986.03615995005000010010x.CrossRefGoogle Scholar
Nwankwo, J.N. and Elinder, C.G., 1979 Cadmium, lead and zinc concentrations in soils and in food grown near a zinc and lead smelter in Zambia Bull Environ Contamin Tox 22 625631 10.1007/BF02026998.CrossRefGoogle Scholar
Parr, R.G. and Pearson, R.G., 1983 Absolute hardness: Companion parameter to absolute electronegativity J Am Chem Soc 105 75127516 10.1021/ja00364a005.CrossRefGoogle Scholar
Parr, R.G. and Yang, W., 1989 Density-functional theory of atoms and molecules New York Oxford Univ Pr..Google Scholar
Pearson, R.G., 1963 Hard and soft acids and bases J Am Chem Soc 85 35333539 10.1021/ja00905a001.CrossRefGoogle Scholar
Pearson, R.G., 1968 Hard and soft acids and bases, HSAB, Part I J Chem Educ 45 581587 10.1021/ed045p581.CrossRefGoogle Scholar
Pearson, R.G., 1968 Hard and soft acids and bases, HSAB, Part II J Chem Educ 45 643648 10.1021/ed045p643.CrossRefGoogle Scholar
Pearson, R.G., 1986 Absolute electronegativity and hardness correlated with molecular orbital theory Proc Natl Acad Sci (USA) 83 84408441 10.1073/pnas.83.22.8440.CrossRefGoogle ScholarPubMed
Pearson, R.G., 1997 Chemical hardness weinheim Wiley-VCH 10.1002/3527606173.CrossRefGoogle Scholar
Peigneur, P. Maes, A. and Cremers, A., 1975 Heterogeneity of charge density in montmorillonite as inferred from cobalt adsorption Clays Clay Miner 23 7175 10.1346/CCMN.1975.0230110.CrossRefGoogle Scholar
Rashin, A.A. and Honig, B., 1985 Reevaluation of the Bom model of the ion hydration J Phys Chem 89 55885593 10.1021/j100272a006.CrossRefGoogle Scholar
Robles, J. and Bartolotti, L.J., 1984 Electronegativities, electron affinities, ionization potentials, and hardness of the elements within spin polarized density functional theory J Am Chem Soc 106 37233727 10.1021/ja00325a003.CrossRefGoogle Scholar
Rose, A.W. and Bianchi-Mosquera, G.C., 1993 Adsorption of Cu, Pb, Zn, Co, Ni, and Ag on goethite and hematite: A control on metal mobilization from red beds into stratiform copper deposits Econ Geol 88 12261236 10.2113/gsecongeo.88.5.1226.CrossRefGoogle Scholar
Schindler, P.W. Liechti, P. and Westall, J.C., 1987 Adsorption of copper, cadmium and lead from aqueous solution to the kaolinite/water interface Neth J Agr Sci 35 219230.Google Scholar
Schultess, C.P. and Huang, C.P., 1990 Adsorption of heavy metal by silicon and aluminium oxydes surfaces on clay minerals Soil Sci Soc Am J 54 679688 10.2136/sssaj1990.03615995005400030008x.CrossRefGoogle Scholar
Siantar, D.P. and Fripiat, J.J., 1995 Lead retention and complexation in a magnesium smectite J Colloid Interface Sci 169 400407 10.1006/jcis.1995.1049.CrossRefGoogle Scholar
Skipper, N.T. Refson, K. and McConnell, J.D.C., 1991 Computer simulation of interlayer water in 2:1 clays J Chem Phys 94 74347445 10.1063/1.460175.CrossRefGoogle Scholar
Skipper, N.T. Soper, A.K. and McConnell, J.D.C., 1991 The structure of interlayer water in vermiculite J Chem Phys 94 57515760 10.1063/1.460457.CrossRefGoogle Scholar
Sposito, G., 1984 The surface chemistry of soils New York Clarendon Pr..Google Scholar
Stadler, M. and Schindler, P.W., 1993 The effect of dissolved ligands on the sorption of Cu(II) by Ca-montmorillonite Clays Clay Miner 42 148160 10.1346/CCMN.1994.0420205.CrossRefGoogle Scholar
Staunton, S. and Roubaud, M., 1997 Adsorption of 137Cs on montmorillonite and illite: Effect of charge compensating cation, ionic strength, concentration of Cs, K and fulvic acid Clays Clay Miner 45 251260 10.1346/CCMN.1997.0450213.CrossRefGoogle Scholar
Sullivan, P.J., 1997 The principle of Hard and Soft Acids and Bases as applied to exchangeable cation selectivity in soils Soil Sci 124 117121 10.1097/00010694-197708000-00009.CrossRefGoogle Scholar
Tiller, K.G. Gerth, J. and Briimmer, G., 1984 The sorption of Cd, Zn and Ni by soil clay fractions: Procedure for partition of bound forms and their interpretation Geoderm 34 116 10.1016/0016-7061(84)90002-8.CrossRefGoogle Scholar
Trichet, J. Disnar, J.R. Bonnamy, S. Gauthier, B. Nakashima, S. Oberlin, A. Perruchot, A. and Rouzaud, J.N., 1987 Le comportement mutuel de la matière organique et des métaux: Implications géochimiques et métallogéniques Mém Soc Géol Fr 151 143162.Google Scholar
Van Bladel, R. Halen, H. and Cloos, P., 1993 Calcium-zinc and calcium-cadmium exchange in suspensions of various types of clays Clay Miner 28 3338 10.1180/claymin.1993.028.1.04.CrossRefGoogle Scholar
Viraraghavan, T. and Kapoor, A., 1994 Adsorption of mercury from wastewater by bentonite Appl Clay Sci 9 3149 10.1016/0169-1317(94)90013-2.CrossRefGoogle Scholar
Wada, K. and Kakuto, Y., 1980 Selective adsorption of zinc on halloysite Clays Clay Miner 28 321327 10.1346/CCMN.1980.0280501.CrossRefGoogle Scholar
Xu, S. and Harsh, J.B., 1990 Monovalent cation selectivity quantitatively modeled according to Hard/Soft Acid/Base theory Soil Sci Soc Am J 54 357363 10.2136/sssaj1990.03615995005400020010x.CrossRefGoogle Scholar
Xu, S. and Harsh, J.B., 1990 Hard and Soft Acid-Base model verified for monovalent cation selectivity Soil Sci Soc Am J 54 15961601 10.2136/sssaj1990.03615995005400060014x.CrossRefGoogle Scholar
Xu, S. and Harsh, J.B., 1992 Alkali cation selectivity and surface charge of 2:1 clay minerals Clays Clay Miner 40 567574 10.1346/CCMN.1992.0400511.CrossRefGoogle Scholar
Yang, W. and Parr, R.G., 1985 Hardness, softness, and the fukui function in the electronic theory of metals and catalysis Proc Natl Acad Sci USA 82 67236726 10.1073/pnas.82.20.6723.CrossRefGoogle ScholarPubMed
Zachara, J.M. Kittrick, J.A. and Harsh, J.B., 1988 The mechanism of Zn2+ adsorption on calcite Geochim Cosmochim Acta 52 22812291 10.1016/0016-7037(88)90130-5.CrossRefGoogle Scholar