Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-09T12:58:09.689Z Has data issue: false hasContentIssue false

Further Information Related to the Origin of Glauconite

Published online by Cambridge University Press:  01 July 2024

B. Velde
Affiliation:
Laboratoire de Pétrographie, Université de Paris 6, 4, place Jussieu, 75230 Paris Cedex 05, France
G. S. Odin
Affiliation:
Laboratoire de Géologie, I, Université de Paris 6, 4, place Jussieu, 75230 Paris Cedex 05, France

Abstract

Glauconite-smectite and illite-smectite interlayered minerals are compared by various means in an attempt to establish the mineralogical relations between the two groups. Experiments at 2 Kb pressure and 200–350°C are reported as well as microprobe scans of pelletal glauconites. This new information is used along with published chemical data in order to establish that

(1) Illite and glauconite mixed layered phases appear to be crystallographically similar. Both series show the same relations between potassium (mica) content and the amount of smectite layers apparent in the interlayered structure.

(2) Illite and glauconite mica or mica-like phases can be separated on the basis of Fe and K contents.

(3) Probable phase relations of the two mixed layered mineral series indicate that, when the starting materials contain mixed layered mica-smectites, increasing temperature produces an iron-rich mica in the case of glauconite and an aluminous mica in the case of illite. The mixed layered phases present at intermediate temperatures are not the same for illites and glauconites.

Apparently there is no mineralogical or chemical continuity between illite and glauconite when the potassium content is 6 wt % or greater. It might be possible that the potassic interlayered minerals near montmorillonite or nontronite could form a continuous solid solution.

Type
Research Article
Copyright
Copyright © 1975, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubry, M. P. e. and Odin, G. S., (1975) Sur la nature minéralogique du verdissement des craies Bull. Soc. Géol. Normandie .Google Scholar
Brown, G., (1961) The X-ray Identification and Crystal Structure of Clay Minerals London Mineral Soc..Google Scholar
Cimbalnikova, A., (1971) Chemical variability and structural heterogeneity of glauconites Am. Miner. 56 13851398.Google Scholar
Ehlmann, A. J. Hulings, N. C. and Glover, E. D., (1963) Stages of glauconite formation in modern foraminiferal sediments J. Sedim. Petrol. 33 8796.Google Scholar
Foster, M. D., (1969) Studies of celadonites and glauconites Geol. Survey prof. Paper, U.S.A. .CrossRefGoogle Scholar
Frey, M. Hunziker, J C R P and Schindler, C., (1973) Progressiv niedriggradige Metamorphose glaukonitführen der Horizonte in den Helvetischen Alpen Contr. Mus. Pet. 39 185218.CrossRefGoogle Scholar
Gabis, Victor, (1963) Étude minéralogique et géochimique de la série sédimentaire oligocène du Velay Bulletin de la Société française de Minéralogie et de Cristallographie 86 4 315354.CrossRefGoogle Scholar
Giresse, P. e. and Odin, G. S., (1973) Nature minéralogique et origine des glaucomes du plateau continental du Gabon et du Congo Sedimentol. 20 457483.CrossRefGoogle Scholar
Hower, J., (1961) Some factors concerning the nature and origin of glauconite Am. Miner. 46 313334.Google Scholar
Hower, J. and Mowatt, T. C., (1966) The mineralogy of illite and mixed-layer illite-montmorillonite Am. Miner. 51 825854.Google Scholar
Korzhinskii, D. S., (1965) The theory of systems with perfectly mobile components and processes of mineral formation Am. J. Sci. 263 193205.CrossRefGoogle Scholar
Kossovskaya, Q. G. and Drits, V. A., (1970) The variability of micaceous minerals in sedimentary rocks Sedimentol. 15 83101.CrossRefGoogle Scholar
Lamboy, M., (1967) Répartition de la “glauconie” sur le plateau continental de la Galice et des Asturies (Espagne) C.r. Acad. Sci. 265 855857.Google Scholar
Macrae, S. G. and Lambert, J. L. M., (1968) A study of some glauconites from cretaceous and tertiary formations in southern England Clay Minerals 7 431440.CrossRefGoogle Scholar
Manghnani, M. and Hower, J., (1964) Glauconites: cations exchange capacities and i.r. spectra Am. Miner. 49 586598.Google Scholar
Odin, G. S., (1971) Sur la genèse des glauconies et leur signification sédimentologique C.r. Acad. Sci. 272 697699.Google Scholar
Odin, G. S., (1972) Modalités du passage continu du sédiment argileux au minéral glauconite dans les formations éocènes du Rodeberg C.r. Acad. Sci. 274 660663.Google Scholar
Odin, G. S. Blondeau, A. Damotte, R. Durand, S. Ollivier, M. F. Le Calvez, Y. Lezaud, L. Perreau, M. e. and Pomerol, C., (1972) Le sondage de Cassel Bull Inf. Bass 32 2152.Google Scholar
Odin, G. S. e. and Giresse, P., (1972) Genèse de sédiments phylliteux (berthiérine, smectite ferrifère, glauconite ouverte) dans les sédiments du golfe du Guinée C.r. Acad. Sci. 275 177180.Google Scholar
Parry, W. T. and Reeves, C. C., (1966) Lacustrine glauconitic mica from plurial Lake Mound, Lynn and Terry Counties, Texas Am. Miner. 51 229235.Google Scholar
Schultz, L. G., (1969) Lithium and potassium adsorption; dehydroxylation temperature and structural water content of aluminous smectites Clays and Clay Minerals 17 115149.CrossRefGoogle Scholar
Velde, B., (1969) The compositional join muscovite-pyrophyllite at moderate temperatures and pressures Bull. Soc. franç. Min. Cristallogr. 92 360368.Google Scholar
Velde, B., (1972) Celadonite mica: solid solution and stability Contrib. Min. Petr. 37 235247.CrossRefGoogle Scholar
Velde, B., (1972) Phase equilibria for dioctahedral expandable phases in sediments and sedimentary rocks Proc. Int. Clay Conf. 285300.Google Scholar
Velde, B. and Bystrom-Brusewitz, A. M., (1972) The transformation of natural clay minerals at elevated temperature and pressure Geol For. Foch. 94 449458.Google Scholar
Zumpe, H. H., (1971) Microstructure in cenomanian glauconite from the Isle of Wight, England Min. Mag. 38 215224.CrossRefGoogle Scholar