Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-01T05:15:47.236Z Has data issue: false hasContentIssue false

FTIR Study of Deuterated Montmorillonites: Structural Features Relevant to Pillared Clay Stability

Published online by Cambridge University Press:  28 February 2024

Krishna Bukka
Affiliation:
Department of Metallurgy and Metallurgical Engineering, University of Utah, Salt Lake City, Utah 84112-1183
J. D. Miller
Affiliation:
Department of Metallurgy and Metallurgical Engineering, University of Utah, Salt Lake City, Utah 84112-1183
Joseph Shabtai*
Affiliation:
Department of Fuels Engineering, University of Utah, Salt Lake City, Utah 84112-1183
*
1To whom correspondence should be addressed.

Abstract

FTIR studies of six partially-deuterated montmorillonites (MS) reveal the presence of two O-D stretching bands, one between 2702–2728 cm-1 and another near 2680 cm-1. For homoionic (Li, Na, Mg, Ca, or La) Wyoming-type MS, the position of the higher frequency band, designated as (O-D)h, is between 2714–2728 cm-1, whereas for homoionic Cheto-type MS it is between 2702–2706 cm-1. The lower frequency band, designated as (O-D)1, is in the narrow range of 2674–2684 cm-1. Resolution of two corresponding O-H bands, appearing near 3670 and 3635 cm-1, was observed only after partial dehydroxylation of the smectites. The changes in the relative intensities of the two O-D stretching bands as a function of the smectite type and of the Lewis acidity (charge density) of the exchangeable ion were determined. For Wyoming-type MS, the intensity of the (O-D)h band is much lower than that of the (O-D)l band, whereas for Cheto-type MS, the intensity of the (O-D)h band is about equal or slightly higher than that of the (O-D)l band. The observed resolution can be ascribed tentatively to the presence of (at least) two types of octahedral OH groups in the smectites, the (O-D)h band being assigned to AlMgOH and the (O-D)1 band to AlAlOH groups. Pillaring of Cheto-type MS with hydroxy-Al13 oligocations resulted in products showing much higher thermal stability between 400–600°C compared to that of identically pillared Wyoming-type MS. Compositional and other factors, e.g., CEC values and mode of pillaring, may cause this difference in stability.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cabot Corporation, 1987 Cab-O-Sil Fumed Silica: Properties and Functions Cab-O-Sil Division Bull. 89.Google Scholar
Deuel, H., Huber, G. and Iberg, R., Organische Derivate von Tonmineralien Helv. Chim. Acta 1950 33 12291232 10.1002/hlca.19500330514.CrossRefGoogle Scholar
Edelman, C. H. and Favejee, J. Ch. L., On the crystal structure of montmorillonite and halloysite Z. Kristallogr 1940 102 417431.CrossRefGoogle Scholar
Farmer, V. C., (1979) Data Handbook for Clay Materials and Other Non-metallic Minerals: Olphen, H. Van and Fripiat, J. J., eds., Pergamon Press, 285337.Google Scholar
Faucher, J. A. and Thomas, H. C., Exchange between heavy water and clay minerals J. Phys. Chem 1955 59 189191 10.1021/j150524a026.CrossRefGoogle Scholar
Fripiat, J. J., High resolution solid state NMR study of pillared clays Catalysis Today 1988 2 281295 10.1016/0920-5861(88)85010-7.CrossRefGoogle Scholar
Goodman, B. A. and Stucki, J. W., The use of nuclear magnetic resonance for the determination of tetrahedral aluminum in montmorillonite Clay Miner 1984 19 663667 10.1180/claymin.1984.019.4.12.CrossRefGoogle Scholar
Grim, R. E., Clay Mineralogy 1968 2nd ed. New York McGraw-Hill 315.Google Scholar
Grim, R. E. and Kulbicki, G., Montmorillonite: High temperature reactions and classification A mer. Mineral 1961 46 13291369.Google Scholar
Gruner, J. W., The crystal structure of talc and pyrophyllite Z. Kristallogr 1934 88 412419.CrossRefGoogle Scholar
Güven, N., Electron-optical investigations on mont-morillonites. 1. Cheto, Camp Berteaux and Wyoming Montmorillonites Clays & Clay Minerals 1974 22 155165 10.1346/CCMN.1974.0220203.CrossRefGoogle Scholar
Hayashi, H., Montmorillonites from some bentonite deposits in Yamagata Prefecture, Japan Clay Sci 1963 1 6 176182.Google Scholar
Hofmann, U., Endell, K. and Wilm, D., Kristall-struktur und Quellung von Montmorillonit Z. Kristallogr 1933 86 340348.CrossRefGoogle Scholar
Jonas, E. C., The reversible dehydroxylation of clay minerals Proc. Third Natl. Clay Confer., U.S. Natl. Acad. Sci., Publ. 395 1955 6672.CrossRefGoogle Scholar
Komarneni, S., Fyfe, C. A., Kennedy, G. J. and Strobl, H., Characterization of synthetic and naturally occurring clays by “Al and 29Si magic angle spinning NMR spectroscopy J. Amer. Ceram. Soc 1986 69 3 c45c47.CrossRefGoogle Scholar
Lahav, N., Shani, U. and Shabtai, J., Cross-linked smectites. I. Synthesis and properties of hydroxy-aluminum montmorillonite Clays & Clay Minerals 1978 26 107115 10.1346/CCMN.1978.0260205.CrossRefGoogle Scholar
Landgraf, K. F., Distinction between Cheto and Wyoming type of montmorillonites by the effect of organic interlayers on the optical refraction Chem. Erde 1979 38 97104.Google Scholar
Landgraf, K. F., Distinction between Cheto and Wy-oming type of montmorillonites by the relative X-ray in-tensities of the (001) series of the glycol complexes Chem. Erde 1979 38 233244.Google Scholar
Lippmaa, E., Magi, M., Samoson, A., Engelhardt, G. and Grimmer, A. R., Structural studies of silicates by solid-state high resolution 29Si NMR J. Amer. Chem. Soc 1980 102 48894893 10.1021/ja00535a008.CrossRefGoogle Scholar
Magdefrau, E. and Hofmann, U., Die Kristallstruktur des Montmorillonits Z. Kristallogr 1937 98 299323.Google Scholar
Matsumoto, M., Suzuki, M., Takahashi, H. and Saito, Y., Solid-state NMR studies on pillar-interlayered naturally-occurring montmorillonite Bull. Chem. Soc. Japan 1986 89 1 303304 10.1246/bcsj.59.303.CrossRefGoogle Scholar
McConnell, D., The crystal chemistry of montmo-rillonite Amer. Mineral 1950 35 166172.Google Scholar
Michaelian, K. H., Bukka, K. and Permann, D. N. S., Photoacoustic infrared spectra (250-10, 000 cm1) of partially deuterated kaolinite #9 Can. J. Chem 1987 65 14201423 10.1139/v87-240.CrossRefGoogle Scholar
Muller, D., Gessner, W., Behrens, H. J. and Scheller, G., Determination of the aluminum coordination in aluminium-oxygen compounds by solid-state high resolution 27Al NMR Chem. Phys. Lett 1981 79 5962 10.1016/0009-2614(81)85288-8.CrossRefGoogle Scholar
Pinnavaia, T. J., Landau, S. D., Tzou, M. S., Johnson, I. D. and Lipsicas, M., Layer cross-linking in pillared clays J. Amer. Chem. Soc 1985 107 72227224 10.1021/ja00310a102.CrossRefGoogle Scholar
Plee, D., Borg, F., Gatineau, L. and Fripiat, J. J., High-resolution solid-state 27A1 and 29Si nuclear magnetic resonance study of pillared clays J. Amer. Chem. Soc 1985 107 23622369 10.1021/ja00294a028.CrossRefGoogle Scholar
Plee, D., Gatineau, L. and Fripiat, J. J., Pillaring processes of smectites with and without tetrahedral substitution Clays & Clay Minerals 1987 352 8188 10.1346/CCMN.1987.0350201.CrossRefGoogle Scholar
Qin, G., Zheng, L., Xie, Y. and Wu, C., On the framework hydroxyl groups of H-ZSM-5 zeolites J. Catal 1985 95 609612 10.1016/0021-9517(85)90140-X.CrossRefGoogle Scholar
Roy, D. M. and Roy, R., Hydrogen-deuterium ex-change in clays and problems in the assignment of infrared frequencies in the hydroxyl region Geochim. et Cos-mochim. Acta 1957 11 7285 10.1016/0016-7037(57)90006-6.CrossRefGoogle Scholar
Russell, J. D. and Fraser, A. R., I. R. spectroscopic evidence for interaction between hydronium ions and lattice OH groups in montmorillonite Clays & Clay Minerals 1971 19 5559 10.1346/CCMN.1971.0190106.CrossRefGoogle Scholar
Sanz, J. and Serratosa, J. M., 29Si and 27Al high-resolution MAS-NMR spectra of phyllosilicates J. Amer. Chem. Soc 1984 106 47904793 10.1021/ja00329a024.CrossRefGoogle Scholar
Schomburg, J., Dilatometrical investigations of dioc-tahedral smectites Chem. Erde 1976 35 192198.Google Scholar
Schutz, A., Stone, W E E Poncelet, G. and Fripiat, J. J., Preparation and characterization of bidimensional zeolitic structure obtained from synthetic beidellite and hy-droxy-aluminum solutions Clays & Clay Minerals 1987 354 251261 10.1346/CCMN.1987.0350402.CrossRefGoogle Scholar
Solomon, D. H. and Hawthorne, D. G., Chemistry of Pigments and Fillers 1983 1 1417.Google Scholar
Sterte, J. and Shabtai, J., Cross-linked smectites. V. Synthesis and properties of hydroxy-silicoaluminum mont-morillonites and fluorhectorites Clays & Clay Minerals 1987 35 6 429439 10.1346/CCMN.1987.0350603.CrossRefGoogle Scholar
Tennakoon, D. T., Jones, W. and Thomas, J. M., Structural aspects of metaloxide-pillared sheet silicates J. Chem. Soc. Faraday Trans 1986 82 30813095 10.1039/f19868203081.CrossRefGoogle Scholar
Tokarz, M. and Shabtai, J., Cross-linked smectites. IV. Preparation and properties of hydroxyaluminum-pil-lared Ce- and La-montmorillonites and fluorinated NH4 +-montmorillonites Clays & Clay Minerals 1985 33 2 8998 10.1346/CCMN.1985.0330202.CrossRefGoogle Scholar
Van der Marel, H. W. and Beutelspacher, H., Atlas of Infrared Spectroscopy of Clay Minerals and Their Ad-mixtures 1976 Amsterdam Elsevier.Google Scholar
Weiss, C. A., Altaner, S. P. and Kirkpatrick, R. J., High resolution 29Si NMR spectroscopy of 2:1 layer silicates: Correlations among chemical shift, structural distortions, and chemical variations A mer. Mineral 1987 72 935942.Google Scholar