Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-04T09:12:29.074Z Has data issue: false hasContentIssue false

Fougerite, a new mineral of the pyroaurite-iowaite group: Description and crystal structure

Published online by Cambridge University Press:  01 January 2024

Fabienne Trolard*
Affiliation:
INRA, UR1119, Géochimie des Sols et des Eaux, F-13545 Aix-en-Provence, France
Guilhem Bourrié
Affiliation:
INRA, UR1119, Géochimie des Sols et des Eaux, F-13545 Aix-en-Provence, France
Mustapha Abdelmoula
Affiliation:
Université Henri Poincaré — Nancy I, UMR CNRS 7564, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, 405 rue de Vandoeuvre, F-56400 Villers-lès-Nancy, France
Philippe Refait
Affiliation:
LEMMA, Université de La Rochelle, Bâtiment Marie Curie, Av. Michel Crépeau, F-17042 La Rochelle cedex 01, France
Frédéric Feder
Affiliation:
CIRAD, internal research unit ‘Environmental Risks of Recycling’, Station de la Bretagne, BP 20, F-97408 Saint-Denis messagerie Cedex, Réunion, France
*
*E-mail address of corresponding author: trolard@aix.inra.fr

Abstract

Fougerite (IMA 2003-057) is a mixed M(II)-M(III) hydroxysalt of the green rust group, where M(II) can be Fe or Mg, and M(III) is Fe. The general structural formula is: [Fe1−2+xFex3+Mgy(OH)2+2y]+x[x/nA−n.mH2O]−x where A is the interlayer anion and n its valency, with 1/4 ≼ x/(1+y) ≼ 1/3 and m ≼ (1−x+y). The structure of green rusts and parent minerals can accommodate a variety of anions, such as OH, Cl, CO32−,SO42−${\rm{CO}}_3^{2 - },\;{\rm{SO}}_4^{2 - }$. The structure of the mineral was studied by Mössbauer, Raman and X-ray absorption spectroscopies (XAS) at the FeK edge. Mössbauer spectra of the mineral obtained at 78 K are best fitted with four doublets: D1 and D2 due to Fe2+ (isomer shift δ ≈ 1.27 and 1.25 mm s−1, quadrupole splitting ΔEQ ≈ 2.86 and 2.48 mm s−1, respectively) and D3 and D4 due to Fe3+ (δ ≈ 0.46 mm s−1, ΔEQ ≈ 0.48 and 0.97 mm s−1, respectively). Microprobe Raman spectra obtained with a laser at 514.53 nm show the characteristic bands of synthetic green rusts at 427 and 518 cm−1. X-ray absorption spectroscopy shows that Mg is present in the mineral in addition to Fe, that the space group is and the lattice parameter a ≈ 0.30–0.32 nm. The mineral forms by partial oxidation and hydrolysis of aqueous Fe2+, to give small crystals (400–500 nm) in the form of hexagonal plates. The mineral is unstable in air and transforms to lepidocrocite or goethite. The name is for the locality of the occurrence, a forested Gleysol near Fougères, Brittany, France. Its characteristic blue-green color (5BG6/1 in the Munsell system) has long been used as a universal criterion in soil classification to identify Gleysols. From a thermodynamic model of soil-solution equilibria, it was proposed that for the eponymous mineral, Fougères-fougerite, OH may be the interlayer anion. In other environments, the interlayer anion may be different, and other varieties of fougerite may exist. Fougerite plays a key role in the pathways of formation of Fe oxides.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelmoula, M. Refait, P.h. Drissi, S.H. Mihe, J.-P. and Génin, J-MR, (1996) Conversion electron Mössbauer spectroscopy and X-ray diffraction studies of the formation of carbonate-containing green rust one by corrosion of metallic iron in NaHCO3 and (NaHCO3 + NaCl) solutions Corrosion Science 38 623663 10.1016/0010-938X(95)00153-B.CrossRefGoogle Scholar
Abdelmoula, M. Trolard, F. Bourrié, G. and Génin, J-MR, (1998) Evidence for the Fe(II)-Fe(III) green rust ‘fougerite’ mineral and its transformation with depth Hyperfine Interactions 112 235238 10.1023/A:1010802508927.CrossRefGoogle Scholar
Al-Agha, M.R. Burley, S.D. Curtis, C.D. and Esson, J., (1995) Complex cementation textures and authigenic mineral assemblages in recent concretions from the Lincolnshire Wash (east coast, UK) driven by Fe(0) to Fe(II) oxidation Journal of the Geological Society, London 152 157171 10.1144/gsjgs.152.1.0157.CrossRefGoogle Scholar
Allmann, R., (1968) The crystallographical structure of pyroaurite Acta Crystallographica B24 972977 10.1107/S0567740868003511.CrossRefGoogle Scholar
Allmann, R., (1970) Doppelschichtstrukturen mit brucitaehnlichen Schichtionen [Me(II)1−xMe(III)x (OH)2]x+ Chimia 24 99108.Google Scholar
Aurousseau, P., Bourrié, G. and Curmi, P. (1987) Organisation, minéralogie et dynamique de l’aluminium dans les sols acides et pozoliques en climat tempéré et océanique (Exemples du Massif Armoricain, France). Pp. 85105 in: Table Ronde Internationale du CNRS, ‘Podzols et Podzolisation’, Poitiers, 10–11 April 1986, (Righi, D. and Chauvel, A., editors), AFES-INRA, Paris.Google Scholar
Avery, B.W., (1973) Soil classification in the Soil Survey of England and Wales Journal of Soil Science 24 324338 10.1111/j.1365-2389.1973.tb00769.x.CrossRefGoogle Scholar
Bernal, J.D. Dasgupta, D.T. and Mackay, L., (1959) The oxides and hydroxides of iron and their structural inter-relationships Clay Minerals Bulletin 4 1530 10.1180/claymin.1959.004.21.02.CrossRefGoogle Scholar
Bigham, J.K. Tuovinen, O.H., Caldwell, D.E. Brierley, J.A. and Brierley, C.L., (1985) Mineralogical, morphological, and microbiological characteristics of tubercles in cast iron water mains as related to their chemical activity Planetary Ecology Amsterdam, The Netherlands Van Nostrand-Rheinold 239250.Google Scholar
Bish, D.L. and Brindley, G.W., (1977) A reinvestigation of takovite, a nickel aluminum hydroxy-carbonate of the pyroaurite group American Mineralogist 62 458464.Google Scholar
Boucherit, N. Hugot-Le Goff, A. and Joiret, S., (1991) Raman studies of corrosion films grown on Fe and Fe-Mo in pitting conditions Corrosion Science 32 497507 10.1016/0010-938X(91)90103-V.CrossRefGoogle Scholar
Boucherit, N. Hugot-Le Goff, A. and Joiret, S., (1992) In situ Raman identification of stainless steels pitting corrosion films Material Sciences Forum 111–112 580588.Google Scholar
Bourrié, G. Trolard, F. Génin, J-MR Jaffrezic, A. Maître, V. and Abdelmoula, M., (1999) Iron control by equilibria between hydroxy-Green Rusts and solutions in hydromorphic soils Geochimica et Cosmochimica Acta 63 34173427 10.1016/S0016-7037(99)00262-8.CrossRefGoogle Scholar
Bourrié, G. Trolard, F. Refait, P.h. and Feder, F., (2004) A solid-solution model for Fe(II)-Fe(III)-Mg(II) green rusts and fougerite and estimation of their Gibbs free energies of formation Clays and Clay Minerals 52 382394 10.1346/CCMN.2004.0520313.CrossRefGoogle Scholar
Braithwaite, R.S.W. Dunn, P.J. Pritchard, R.G. and Paar, W.H., (1994) Iowaite, a re-investigation Mineralogical Magazine 58 7985 10.1180/minmag.1994.058.390.08.CrossRefGoogle Scholar
Brindley, G.W. and Bish, D.L., (1976) Green rust: a pyroaurite type structure Nature 263 353 10.1038/263353a0.CrossRefGoogle Scholar
Brindley, G.W. and Kikkawa, S., (1979) A crystal-chemical study of Mg, Al and Ni, Al hydroxy-perchlorates and hydroxy-carbonates American Mineralogist 64 836843.Google Scholar
Drissi, S.H. Refait, P.h. Abdelmoula, M. and Génin, J-MR, (1995) Preparation and thermodynamic properties of Fe(II)-Fe(III) hydroxycarbonate (green rust 1), Pourbaix diagram of iron in carbonate-containing aqueous media Corrosion Science 37 20252041 10.1016/0010-938X(95)00096-3.CrossRefGoogle Scholar
Duchaufour, P.h. Faivre, P. and Gury, M., (1976) Atlas écologique des sols du monde Paris Masson 117.Google Scholar
Feder, F., (2001) Dynamique des processus d’oxydo-réduction dans les sols hydromorphes — Monitoring in situ de la solution du sol et des phases solides ferrifères France Université d’Aix-Marseille III, Aix-en-Provence 207 pp.Google Scholar
Feder, F. Trolard, F. Klingelhöfer, G. and Bourrié, G., (2005) In situ Mössbauer spectroscopy: evidence for green rust (fougerite) in a gleysol and its mineralogical transformations with time and depth Geochimica et Cosmochimica Acta 69 44634483 10.1016/j.gca.2005.03.042.CrossRefGoogle Scholar
Feitknecht, W. and Keller, G., (1950) Über die dunkelgrünen Hydroxyverbindungen des Eisens Zur Anorganische Allgemeine Chemie 262 6168 10.1002/zaac.19502620110.CrossRefGoogle Scholar
Génin, J-MR Bourrié, G. Trolard, F. Abdelmoula, M. Jaffrezic, A. Refait, P.h. Maître, V. Humbert, B. and Herbillon, A., (1998) Thermodynamic equilibria in aqueous suspensions of synthetic and natural Fe(II)-Fe(III) Green Rusts: occurrences of the mineral in hydromorphic soils Environmental Science and Technology 32 10581068 10.1021/es970547m.CrossRefGoogle Scholar
Génin, J-MR Refait, P.h. Bourrié, G. Abdelmoula, M. and Trolard, F., (2001) Structure and stability of Fe(II)-Fe(III) green rust ‘fougerite’ mineral and its potential for reducing pollutants in soil solutions Applied Geochemistry 16 559570 10.1016/S0883-2927(00)00043-3.CrossRefGoogle Scholar
Girard, A. and Chaudron, G., (1935) Sur la constitution de la rouille Comptes rendus de l’Académie des Sciences, Paris 200 127129.Google Scholar
Hansen, H.C.B. Koch, C.B. Nancke-Krogh, H. Borggaard, O.K. and Sørensen, J., (1996) Abiotic nitrate reduction to ammmonium: key role of green rust Environmental Science and Technology 30 20532056 10.1021/es950844w.CrossRefGoogle Scholar
Hashi, K. Kikkawa, S. and Koizumi, M., (1983) Preparation and properties of pyroaurite-like hydroxy minerals Clays and Clay Minerals 31 152154 10.1346/CCMN.1983.0310210.CrossRefGoogle Scholar
Huang, Y.H. and Zhang, T.C., (2004) Effects of low pH on nitrate reduction by iron powder Water Research 38 26312642 10.1016/j.watres.2004.03.015.CrossRefGoogle Scholar
IUSS Working Group WRB, World reference base for soil resources 2006 — A framework for international classification, correlation and communication (2006) Rome FAO.Google Scholar
Koch, C.B. and Mørup, S., (1991) Identification of green rust in an ochre sludge Clay Minerals 26 577582 10.1180/claymin.1991.026.4.12.CrossRefGoogle Scholar
Kohls, D.W. and Rodda, J.L., (1967) Iowaite, a new hydrous magnesium hydroxide ferric oxychloride from the Precambrian of Iowa American Mineralogist 52 12611271.Google Scholar
Koritnig, S. and Süsse, P., (1975) Meixnerit, Mg6Al2(OH)18-*·4H2O, ein neues Magnesium-Aluminium-Hydroxid-Mineral Tschermaks Mineralogische und Petrographische Mitteilungen 22 7987 10.1007/BF01081303.CrossRefGoogle Scholar
Legrand, L. Mazerolles, L. and Chaussé, A., (2004) The oxidation of carbonate green rust into ferric phases: solid-state reaction or transformation via solution Geochimica et Cosmochimica Acta 68 34973507 10.1016/j.gca.2004.02.019.CrossRefGoogle Scholar
Loughlin, E.J. Kelly, S.D. Kemner, K.M. Csencsits, R. and Cook, R.E., (2003) Reduction of Ag, AuIII, CuII and HgII by FeII/FeIII hydroxysulfate green rust Chemosphere 53 437446 10.1016/S0045-6535(03)00545-9.CrossRefGoogle Scholar
Mitchell, B.D. Smith, B.F.L. and Endredy, A.S.d., (1971) The effect of buffered sodium dithionite solution and ultrasonic agitation on soil clays Israeli Journal of Chemistry 9 4552 10.1002/ijch.197100007.CrossRefGoogle Scholar
Murad, E. Taylor, R.M., Long, G.J. and Stevens, J.G., (1986) The oxidation of hydroxycarbonate green rusts Industrial Applications of the Mössbauer Effect New York Plenum 585593 10.1007/978-1-4613-1827-9_32.CrossRefGoogle Scholar
Nguyen, K.h.a. and Duchaufour, P.h.. (1969) () Note sur l’état du fer dans les sols hydromorphes. Science du Sol, 97110.Google Scholar
Ona-Nguema, G. Abdelmoula, M. Jorand, F. Benali, O. Géhin, A. Block, J.C. and Génin, J.M.R., (2002) Iron (II,III) hydroxycarbonate green rust formation and stabilisation from lepidocrocite bioreduction Environmental Science and Technology 36 1620 10.1021/es0020456.CrossRefGoogle ScholarPubMed
Peltier, E. Allada, R.K. Navrotsky, A. and Sparks, D., (2006) Nickel solubility and precipitation in soils: a thermodynamic study Clays and Clay Minerals 54 153164 10.1346/CCMN.2006.0540202.CrossRefGoogle Scholar
Ponnamperuma, F.N. Tianco, E.M. and Loy, T., (1967) Redox equilibria in flooded soils: I. The iron hydroxide system Soil Science 103 374382 10.1097/00010694-196706000-00002.CrossRefGoogle Scholar
Refait, P.h. and Génin, J-MR, (1993) The oxidation of Ni(II)-Fe(III) hydroxides in chloride-containing aqueous media Corrosion Science 34 20592070 10.1016/0010-938X(93)90060-T.CrossRefGoogle Scholar
Refait, P.h. Abdelmoula, M. and Génin, J-MR, (1998) Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions Corrosion Science 40 15471560 10.1016/S0010-938X(98)00066-3.CrossRefGoogle Scholar
Refait, P.h. Charton, A. and Génin, J-MR, (1998) Identification, composition, thermodynamic and structural properties of a pyroaurite-like iron(II)-iron(III) hydroxyoxalate Green Rust European Journal of Solid State Inorganic Chemistry 35 655666 10.1016/S0992-4361(99)80006-X.CrossRefGoogle Scholar
Refait, P.h. Abdelmoula, M. Trolard, F. Génin, J-MR Ehrhardt, J.J. and Bourrié, G., (2001) Mössbauer and XAS study of a green rust mineral; the partial substitution of Fe2+ by Mg2+ American Mineralogist 86 731739 10.2138/am-2001-5-613.CrossRefGoogle Scholar
Refait, P.h. Benali, O. Abdelmoula, M. and Génin, J-MR, (2003) Formation of ‘ferric green rust’ and/or ferrihydrite by fast oxidation of iron(II-III) hydroxychloride green rust Corrosion Science 45 24352449 10.1016/S0010-938X(03)00073-8.CrossRefGoogle Scholar
Roussel, H. Briois, V. Elkaim, E. de Roy, A. and Besse, J.P., (2000) Cationic order and structure of [Zn-Cr-Cl] and [Cu-Cr-Cl] layered double hydroxides: a XRD and EXAFS study Journal of Physical Chemistry B25 59155963 10.1021/jp0000735.CrossRefGoogle Scholar
Schwertmann, U. and Fechter, H., (1994) The formation of green rust and its transformation to lepidocrocite Clay Minerals 29 8792 10.1180/claymin.1994.029.1.10.CrossRefGoogle Scholar
Simon, L. François, M. Refait, P.h. Renaudin, G. Lelaurain, M. and Génin, J-MR, (2003) Structure of the Fe(II-III) layered double hydroxysulphate green rust two from Rietveld analysis Solid State Sciences 5 327334 10.1016/S1293-2558(02)00019-5.CrossRefGoogle Scholar
Sparks, D.L., (2001) Elucidating the fundamental chemistry of soils: past and recent achievements and future frontiers Geoderma 100 303319 10.1016/S0016-7061(01)00026-X.CrossRefGoogle Scholar
Stampfl, P.P., (1969) Ein basisches Eisen-II-III-Karbonat in Rost Corrosion Science 9 185187 10.1016/S0010-938X(69)80029-6.CrossRefGoogle Scholar
Taylor, H.F.W., (1973) Crystal structures of some double hydroxide minerals Mineralogical Magazine 39 377389 10.1180/minmag.1973.039.304.01.CrossRefGoogle Scholar
Taylor, R.M. (1981) Colour in soils and sediments — A review. Pp. 749761 in: International Clay Conference 1981, Bologna-Pavia (Olphen, H. van and Veniale, F., editors), Developments in Sedimentology, 35, Elsevier, Amsterdam.Google Scholar
Taylor, R.M., (1984) The rapid formation of crystalline double hydroxy salts and other compounds by controlled hydrolysis Clay Minerals 19 591603 10.1180/claymin.1984.019.4.06.CrossRefGoogle Scholar
Trolard, F. and Bourrié, G., (1999) L’influence des oxydes de fer de type ‘rouilles vertes’ sur les séquences d’oxydoréduction dans les sols Comptes rendus de l’Académie des Sciences, Paris 329 801806.Google Scholar
Trolard, F. Bourrié, G. Jeanroy, E. Herbillon, A. and Martin, H., (1995) Trace metals in natural iron oxides from laterites: a study using selective kinetic extractions Geochimica et Cosmochimica Acta 59 12851297 10.1016/0016-7037(95)00043-Y.CrossRefGoogle Scholar
Trolard, F. Abdelmoula, M. Bourrié, G. Humbert, B. and Génin, J-MR, (1996) Mise en évidence d’un constituant de type ‘rouilles vertes’ dans les sols hydromorphes — Proposition de l’existence d’un nouveau minéral: la ‘fougérite’ Comptes rendus de l’Académie des Sciences, Paris 323 10151022.Google Scholar
Trolard, F. Génin, J-MR Abdelmoula, M. Bourrié, G. Humbert, B. and Herbillon, A., (1997) Identification of a green rust mineral in a reductomorphic soil by Mössbauer and Raman spectroscopies Geochimica et Cosmochimica Acta 61 11071111 10.1016/S0016-7037(96)00381-X.CrossRefGoogle Scholar
Vysotskii, G.N., (1905) Gley Pochvovedeniye 4 291327 (original paper, in Russian).Google Scholar
Vysotskii, G.N., (1999) Gley. An abridged publication of Vysotskii 1905 on the 257th Anniversary of the Russian Academy of Sciences Eurasian Soil Science 32 10631068.Google Scholar
Zegeye, A. Ona-Nguema, G. Carteret, C. Huguet, L. Abdelmoula, M. and Jorand, F., (2005) Formation of hydroxysulphate green rust 2 as a single iron(II-III) mineral in microbial culture Geomicrobiology Journal 22 389399 10.1080/01490450500248960.CrossRefGoogle Scholar