Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-30T00:00:28.983Z Has data issue: false hasContentIssue false

Factors Affecting Orientation of OH-Vectors in Micas

Published online by Cambridge University Press:  02 April 2024

A. S. Bookin
Affiliation:
Geological Institute, Academy of Sciences, Pyzhevsky 7, 109017 Moscow, U.S.S.R.
V. A. Drits
Affiliation:
Geological Institute, Academy of Sciences, Pyzhevsky 7, 109017 Moscow, U.S.S.R.

Abstract

The orientation of the OH-vectors in hydroxyl groups of micas of different compositions, polytype modifications, and symmetry were calculated by the method of minimization of electrostatic energy. The orientations are strongly affected by the peculiarities of structures, and even slight deviations from the ideal dioctahedral periodicity can introduce a correction of as much as 10° to the value of the polar angle. Ordering of cations in octahedra lead to twisting of the OH-bond towards the octahedron with lower charge and larger dimension. The latter is less true for cation ordering in tetrahedra. Because of these factors and the dependence of the hydrogen position on the coordinates of heavy atoms, such calculations can give reliable results only if the structure has been refined with high precision. Different polytypes of micas displayed the same orientation of the OH-vectors with respect to the axes of a separate layer, if the stacking sequence did not introduce specific distortions of the 2:1 layer.

Резюме

Резюме

Ориентации ОН-векторов гидроксильных групп слюд разного состава, политипных модификаций и симметрии были рассчитаны методом минимизации электростатической энергии. Как оказалось, они сильно зависят от структурных особенностей слюд и даже слабые отклонения от диоктаэдрической периодичности могут внести поправки до 10° к величине полярного угла. Упорядочение катионов в октаэдрах приводит к повороту ОН-связи в сторону октаэдра с меньшим зарядом и большими размерами. Для упорядочения в тетраэдрах этот эффект меньше. Вследствие этих факторов, а также зависимости положения протона от координат тяжелых атомов, такие расчеты могут давать правильные результаты только для хорошо уточненных структур. Различные поли- типные модификации слюд обнаруживают одинаковую ориентацию ОН-векторов относительно осей отдельного слоя при условии, что последовательность наложения слоев не вносит специфических искажений структуры самих 2:1 слоев.

Resümee

Resümee

Die Orientierungen der OH-Vektoren von Hydroxyl-Gruppen in Glimmern verschiedener Zusammensetzung, polytyper Modifikation und verschiedener Symmetrie wurden durch Minimisierung der elektrostatischen Energie berechnet. Die Orientierungen werden sehr stark durch die Eigenheiten der Struktur beeinflußt, und sogar geringe Abweichungen von der idealen dioktaedrischen Abfolge können zu einer Abweichung von bis zu 10° vom Wert des polaren Winkels führen. Die Anordnung von Kationen in den Oktaedern führt zu einer Verdrehung der OH-Bindung gegen das Oktaeder mit der kleineren Ladung und den größeren Dimensionen. Dies stimmt weniger für Kationen in Tetraederlücken. Wegen dieser Faktoren und der Abhängigkeit der Wasserstoffposition von den Koordinaten von Schwermetallen können derartige Berechnungen nur dann verläßliche Ergebnisse liefern, wenn die Struktur mit großer Genauigkeit verfeinert wurde. Verschiedene Polytype von Glimmern zeigen die gleiche Orientierung der OH-Vektoren im Hinblick auf die Achsen einer einzelnen Schicht, wenn die Stapelfolge nicht zu spezifischen Verdrehungen der 2:1 Schicht führt. [U.W.]

Résumé

Résumé

Les orientations de vecteurs-OH dans des groupes hydroxyles de micas de compositions différentes, les modifications polytypiques, et la symmétrie ont été calculées par la méthode de minimisation de l’énergie électrostatique. Les orientations sont fortement affectées parles particuliarités des structures, et même de légères déviations de la périodicité dioctaèdrale idéale peut introduire une correction de jusqu’à 10° à la valeur de l'angle polaire. Le rangement de cations dans les octaèdres mène à la torsion de la liaison OH vers l'octaèdre avec la charge plus basse et ayant les plus grandes dimensions. Ce dernier fait est moins vrai pour le rangement de cations dans les tétraèdres. A cause de ces facteurs, et de la dépendance de la position hydrogène sur les coordonnées d'atômes lourds, de tels calculs ne peuvent donner des résultats dignes de foi que si la structure a été raffinée avec beaucoup de précision. Des polytypes de micas différents exhibent la même orientation pour le vecteur-OH respectivement aux axes d'une couche séparée, si la séquence d'empilement n'introduit pas de distortions spécifiques dans la couche 2:1. [D.J.]

Type
Research Article
Copyright
Copyright © 1982, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S. W. and Bailey, S. W., 1966 The status of clay mineral structures Clays and Clay Minerals, Proc. 14th Natl. Conf. Berkeley, California, 1965 New York Pergamon Press 123.Google Scholar
Besson, G., Dainyak, L. G., de la Calle, C., Tsipursky, S. I., Bookin, A. S., Tchoubar, C. and Drits, V. A., 1981 Features of cation distribution, nature and concentration of defects of stacking in structure of K-saturated nontronite Mineral. Zh. 3 541558.Google Scholar
Bookin, A. S., 1979 Application of electrostatic energy calculations in refinement of mica structures Proc. 8th Conf. X-Ray Study of Mineral Raw Materials, Moscow, 1979 Moscow IGEM Publ. 6364.Google Scholar
Bookin, A. S., Dainyak, L. G., Drits, V. A. and Lapides, I. L., 1979 Interpretation of Mossbauer spectra of Fe3+-containing layer silicates on the basis of structural modelling Cation Ordering in Structures of Minerals Novosibirsk Nauka 2342.Google Scholar
Bookin, A. S., Drits, V. A., Rozdestvenskaya, I. V., Semenova, T. F. and Tsipursky, S. I., 1982 Comparison of orientations of OH-bonds in layer silicates by diffraction methods and electrostatic calculations Clays & Clay Minerals 30 409413.CrossRefGoogle Scholar
Datta, P. and Giese, R. F., 1973 Hydroxyl orientation in muscovite polymorphs Z. Krist. 137 436438.Google Scholar
Drits, V. A. and Kossovskaya, A. G., 1975 The structural and crystallochemical features of layer silicates Crystallochemistry of Minerals and Geological Problems Novosibirsk Nauka 3551.Google Scholar
Fanner, V. C. and Farmer, V. C., 1974 The layer silicates The Infrared Spectra of Minerals London Mineralogical Society 331363.Google Scholar
Giese, R. F., 1979 Hydroxyl orientation in 2:1 phyllosilicates Clays & Clay Minerals 27 213223.CrossRefGoogle Scholar
Giese, R. F. and Datta, P., 1973 Hydroxyl orientation in kaolinite, dickite and nacrite Amer. Mineral. 58 471479.Google Scholar
Guggenheim, S. and Bailey, S. W., 1975 Refinement of the margarite structure in subgroup symmetry Amer. Mineral. 60 10231029.Google Scholar
Guggenheim, S. and Bailey, S. W., 1978 Refinement of the margarite structure in subgroup symmetry: correction, further refinement, and comments Amer. Mineral. 63 186187.Google Scholar
Mineeva, R. M., Soboleva, S. V. and Zvyagin, B. B., 1978 Hydroxyl orientation in muscovite-1M and thermodynamic comparison of muscovites-1M and -2M 1 Phys. Chem. Miner. 3 7980.Google Scholar
Newnham, R. E., 1961 A refinement of the dickite structure and some remarks on polymorphism in kaolin minerals Mineral. Mag. 32 683704.Google Scholar
Pavlishin, V. I., Semenova, T. F. and Rozdestvenskaya, I. V., 1981 Protolithionit-3T: the structure, typomorphism and practical importance Mineral. Zh. 3 4760.Google Scholar
Rausell-Colom, J.A., Sanz, J., Fernandez, M., Serratosa, J. M., Mortland, M. M. and Farmer, V. C., 1979 Distribution of octahedral ions in phlogopites andbiotites Proc. 6th Int. Clay Conf, Oxford, 1978 Amsterdam Elsevier 2736.Google Scholar
Rothbauer, R., 1971 Untersuchung eines 2M 1-Muscovits mit Neutronenstrahlen N. Jahrb. Mineral. Monatsh. 1971 143154.Google Scholar
Rozdestvenskaya, I. V., Drits, V. A., Bookin, A. S. and Finko, V. I., 1982 Location of protons and structural pecularities of dickite Mineral. Zh. 4 5258.Google Scholar
Sanz, J. and Stone, W. E. E., 1979 NMR study of micas. II. Distribution of Fe2+, F, and OH in the octahedral sheet of phlogopites Amer. Mineral. 64 119126.Google Scholar
Soboleva, S. V. and Zvyagin, B. B., 1969 Crystal structure of dioctahedral A1 mica-1M Kristallografiya 13 143154.Google Scholar
Swanson, T. H. and Bailey, S. W., 1981 Redetermination of the lepidolite-2M 1 structure Clays & Clay Minerals 29 8190.CrossRefGoogle Scholar
Takeda, H. and Ross, M., 1975 Mica polytypism: dissimilarities in the crystal structures of coexisting 1M and 2M 1, biotites Amer. Mineral. 60 10301040.Google Scholar
Tsipursky, S. I., 1979 The refinement of the celadonite structure by electron diffraction oblique texture method Proc. 8th Conf. X-Ray Study of Mineral Raw Materials Moscow IGEM Publ. 61.Google Scholar
Tsipursky, S. I. and Drits, V. A., 1977 The efficiency of electronometrical way of intensity measure in electron diffraction research Izv. Akad. Nauk SSSR Phys. Ser. 41 22632271.Google Scholar
Zvyagin, B. B., 1979 HighVoltage Electronography in Layer Silicates Research Moscow Nauka.Google Scholar