Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-01T04:42:41.878Z Has data issue: false hasContentIssue false

Experimental Investigation of the Interaction of Clays with High-pH Solutions: A Case Study From the Callovo-Oxfordian Formation, Meuse-Haute Marne Underground Laboratory (France)

Published online by Cambridge University Press:  01 January 2024

Francis Claret
Affiliation:
Environmental Geochemistry Group, LGIT - Maison des Géosciences, University J. Fourier - CNRS, BP 53, 38041 Grenoble Cedex 9, France ANDRA, Parc de Croix Blanche, 1-7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex, France
Andreas Bauer
Affiliation:
Forschungszentum Karlsruhe, Institut für Nukleare Entsorgung, PO Box 3640, D-76021 Karlsruhe, Germany
Thorsten Schäfer
Affiliation:
Forschungszentum Karlsruhe, Institut für Nukleare Entsorgung, PO Box 3640, D-76021 Karlsruhe, Germany
Lise Griffault
Affiliation:
ANDRA, Parc de Croix Blanche, 1-7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex, France
Bruno Lanson*
Affiliation:
Environmental Geochemistry Group, LGIT - Maison des Géosciences, University J. Fourier - CNRS, BP 53, 38041 Grenoble Cedex 9, France
*
*E-mail address of corresponding author: bruno.lanson@obs.ujf-grenoble.fr

Abstract

The impact of alkaline solutions (pH = 13.2) on the clay mineralogy of the Callovo-Oxfordian formation hosting the French underground laboratory for nuclear waste disposal investigation (Meuse-Haute Marne site) has been studied experimentally. Initially, each of the four samples selected as representative of the mineralogical transition in this Callovo-Oxfordian formation consists of a mixture of three main clay phases: discrete illite, discrete smectite and a randomly interstratified mixed-layered mineral (MLM) containing ∼65% of non-expandable layers. Clay separates were altered in batch reactors at 60°C using high solution:solid ratios. The mineralogy of this clay fraction and solution chemistry were monitored as a function of reaction time. In addition, the interactions between organic matter and clay particles were investigated using scanning transmission X-ray microscopy (STXM).

The clay mineralogy is little affected even though the pH is still high after 1 y reaction time. The only significant mineralogical evolution is the partial dissolution of the discrete smectite component leading to the formation of a new randomly interstratified illite-expandable MLM. Additional mineralogical transformations lead, for one sample, to the dissolution of micro-crystalline quartz and, for another sample, to the crystallization of a tobermorite-like phase. The low reactivity of clay minerals may be attributed to the presence of organic matter in the samples. In their initial state, all outer surfaces of clay particles are indeed covered with organic matter. After 1 y reaction time, STXM studies showed the basal surfaces of clay particles to be devoid of organic matter, but their edges, which are the most reactive sites, were still protected.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, K. Allard, B. Bengtsson, M. and Magnusson, B., (1989) Chemical composition of cement pore waters Cement and Concrete Research 19 327332 10.1016/0008-8846(89)90022-7.Google Scholar
Bauer, A. and Berger, G., (1998) Kaolinite and smectite dissolution rate in high molar KOH solutions at 35°C and 80°C Applied Geochemistry 13 905916 10.1016/S0883-2927(98)00018-3.Google Scholar
Bauer, A. and Velde, B., (1999) Smectite transformation in high molar KOH solutions Clay Minerals 34 259273 10.1180/000985599546226.Google Scholar
Bauer, A. Velde, B. and Berger, G., (1998) Kaolinite transformation in high molar KOH solutions Applied Geochemistry 13 619629 10.1016/S0883-2927(97)00094-2.Google Scholar
Berner, U. (1990) A Thermodynamic Description of the Evolution of Porewater Chemistry and Uranium Speciation during the Degradation of Cement. Nagra NTB, Report 90–12, Baden, Switzerland.Google Scholar
Bosbach, D. Charlet, L. Bickmore, B. and Hochella, M.F., (2000) The dissolution of hectorite: In-situ, real-time observations using atomic force microscopy American Mineralogist 85 12091216 10.2138/am-2000-8-914.Google Scholar
Bouchet, A. and Rassineux, F. (1997) Echantillons d’Argiles du Forage EST 104: Etude minéralogique Approfondie. Andra, Report DR-P-0ERM-98-007A, Chatenay-Malabry, France, 107 pp.Google Scholar
Cama, J. Ganor, J. Ayora, C. and Lasaga, A.C., (2000) Smectite dissolution kinetics at 80 degrees C and pH 8.8 Geochimica et Cosmochimica Acta 64 27012717 10.1016/S0016-7037(00)00378-1.Google Scholar
Carroll, S.A. and Walther, J.V., (1990) Kaolinite dissolution at 25°, 60° and 80°C American Journal of Science 290 797810 10.2475/ajs.290.7.797.Google Scholar
Carroll-Webb, S.A. and Walther, J.V., (1988) A surface complex reaction model for the pH-dependence of corundum and kaolinite dissolution Geochimica et Cosmochimica Acta 52 26092623 10.1016/0016-7037(88)90030-0.Google Scholar
Cassagnabere, A. Parneix, J.C. Sammartino, S. Griffault, L. Maeder, U. Milodowski, T. and Cidu, R., (2001) Mineralogical evolution of bitumimous marl adjacent to an alkaline water conducting feature at the Maqarin analogue site Water-Rock Interaction Liss, Tokyo Balkema 367 370.Google Scholar
Chermak, J.A., (1992) Low temperature experimental investigation of the effect of high pH NaOH solutions on the Opalinus shale, Switzerland Clays and Clay Minerals 40 650658 10.1346/CCMN.1992.0400604.Google Scholar
Chermak, J.A., (1993) Low temperature experimental investigation of the effect of high pH KOH solutions on the Opalinus shale, Switzerland Clays and Clay Minerals 41 365372 10.1346/CCMN.1993.0410313.Google Scholar
Chin, P.F. and Mills, G.L., (1991) Kinetics and mechanisms of kaolinite dissolution: effect of organic ligands Chemical Geology 90 307317 10.1016/0009-2541(91)90106-2.Google Scholar
Claret, F., (2001) Caractérisation structurale des transitions minéralogiques dans les formations argileuses: Contrôles et implications géochimiques des processus d’illitisation. Cas particulier d’une perturbation alcaline dans le Callovo-Oxfordien Laboratoire souterrain Meuse-Haute-Marne Grenoble, France Université Joseph Fourier 174 pp.Google Scholar
Cody, G.D. Botto, R.E. Ade, H. Behal, S. Disko, M. and Wirick, S., (1995) Inner-shell spectroscopy and imaging of a subbituminous coal: In-situ analysis of organic and inorganic microstructure using C(1s)-, Ca(2p)-, and Cl(2s)-NEXAFS Energy and Fuels 9 525533 10.1021/ef00051a018.Google Scholar
Decarreau, A. (1999) Etude Expérimentale des Réactions entre Argiles de sites de Stockage Français et Eaux Cimentaires. Andra, Report D-RP-1UPT-99-001, Chatenay-Malabry, France, 38 pp.Google Scholar
Drits, V.A. and Sakharov, B.A., (1976) X-ray Structure Analysis of Mixed-layer Minerals Moscow Doklady Akademii Nauk, SSSR 256 pp.Google Scholar
Drits, V.A. Środoń, J. and Eberl, D.D., (1997) XRD measurement of mean crystallite thickness of illite and illite/smectite: Reappraisal of the Kübler index and the Scherrer equation Clays and Clays Minerals 45 461475 10.1346/CCMN.1997.0450315.Google Scholar
Eberl, D.D. Velde, B. and McCormick, T., (1993) Synthesis of illite-smectite from smectite at Earth surface temperatures and high pH Clay Minerals 28 4960 10.1180/claymin.1993.028.1.06.Google Scholar
Faure, P. Landais, P. and Griffault, L., (1999) Behavior of organic matter from Callovian shales during low-temperature air oxidation Fuel 78 15151525 10.1016/S0016-2361(99)00086-1.Google Scholar
Francis, J.T. and Hitchcock, A.P., (1992) Inner-shell spectroscopy of p-benzoquinone, hydroquinone, and phenol: Distiguishing quinoid and benzenoid structures Journal of Physical Chemistry 96 65986610 10.1021/j100195a018.Google Scholar
Haworth, A. Sharland, S.M. and Tweed, C.J., (1989) Modeling of the degradation of cement in a nuclear waste repository Material Research Society Symposium Proceedings 127 447454 10.1557/PROC-127-447.Google Scholar
Henke, B.L. Gullikson, E.M. and Davis, J.C., (1993) X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92 Atomic Data and Nuclear Data Tables 54 181342 10.1006/adnd.1993.1013.Google Scholar
Hitchcock, A.P. and Mancini, D.C., (1994) Bibliography and database of inner-shell excitation spectra of gas phase atoms and molecules Journal of Electron Spectroscopy and Related Phenomena 67 1132 10.1016/0368-2048(94)87001-2.Google Scholar
Hitchcock, A.P. Newbury, D.C. Ishii, I. Stöhr, J. Horsley, J.A. Redwing, R.D. Johnson, A.L. and Sette, F., (1986) Carbon K-shell excitation of gaseous and condensed cyclic hydrocarbons: C3H6, C4H8, C5H8, C5H10, C6H10, C6H12, and C8H8 Journal of Chemical Physics 85 48494862 10.1063/1.451719.Google Scholar
Hitchcock, A.P. Urquart, S.G. and Rightor, E.G., (1992) Inner shell spectroscopy of benzaldehyde, terephthalaldehyde, ethyl benzoate, terephthaloyl chloride, and phosgene: Models for core excitation of poly (ethylene terephathalate) Journal of Physical Chemistry 96 87368750 10.1021/j100201a015.Google Scholar
Huang, W.L., (1993) The formation of illitic clays from kaolinite in KOH solution from 225°C to 350°C Clays and Clay Minerals 41 645654 10.1346/CCMN.1993.0410602.Google Scholar
Huertas, F.J. Caballero, E. de Cisneros, C.J. Huertas, F. and Linares, J., (2001) Kinetics of montmorillonite dissolution in granitic solutions Applied Geochemistry 16 397407 10.1016/S0883-2927(00)00049-4.Google Scholar
Inoue, A. Bouchet, A. Velde, B. and Meunier, A., (1989) Convenient technique for estimating smectite layer percentage in randomly interstratified illite/smectite minerals Clays and Clay Minerals 37 227234 10.1346/CCMN.1989.0370305.Google Scholar
Ishii, I. and Hitchcock, A.P., (1987) A quantitative experimental study of the core excited electronic states of foramide, formic acid, and formyl fluoride Journal of Chemical Physics 87 830839 10.1063/1.453290.Google Scholar
Jacobsen, C. Williams, S. Anderson, E. Browne, M.T. Buckley, C.J. Kern, D. Kirz, J. Rivers, M. and Zhang, X., (1991) Diffraction-limited imaging in a scanning transmission x-ray microscope Optics Communications 86 351364 10.1016/0030-4018(91)90016-7.Google Scholar
Jacobsen, C. Wirick, S. Flynn, G. and Zimba, C., (2000) Soft X-ray spectroscopy with sub-100nm spatial resolution Journal of Microscopy 197 173184 10.1046/j.1365-2818.2000.00640.x.Google Scholar
Jeffries, N.L. Tweed, C.J. and Wisbey, S.J., (1988) The effects of changes in pH in a clay surrounding a cementitious repository Material Research Society Symposium Proceedings 112 4352 10.1557/PROC-112-43.Google Scholar
Lunden, I. and Andersson, K., (1989) Modelling the mixing of cement pore water and groundwater using the PHREEQC code Material Research Society Symposium Proceedings 127 949 956.Google Scholar
Ma, Y. Chen, C.T. Meigs, G. Randall, K. and Sette, F., (1991) High-resolution K-shell photoabsorption measurements of simple molecules Physical Review A 44 18481858 10.1103/PhysRevA.44.1848.Google Scholar
Mohnot, S.M. Bae, J.H. and Foley, W.L., (1987) A Study of Mineral/Alkali Reactions SPE Reservoir Engineering 2 04 653663 10.2118/13032-PA.Google Scholar
Moore, D.M. and Reynolds, R.C. Jr, (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals Oxford and New York Oxford University Press 322 pp.Google Scholar
Nagra (1995) Column Experiments: Results of Experiments and Modelling. Nagra NTB, Report 95–70, Baden, Switzerland.Google Scholar
Neuhäusler, U. Abend, S. Jacobsen, C. and Lagaly, G., (1999) Soft X-ray spectromicroscopy on solid-stabilized emulsions Colloid Polymer Science 277 719726 10.1007/s003960050445.Google Scholar
Rassineux, F. Griffault, L. Meunier, A. Berger, G. Petit, S. Viellard, P. Zellagui, R. and Munoz, M., (2001) Expandability-layer stacking relationship during experimental alteration of a Wyoming bentonite in pH 13.5 solutions at 35 and 60°C Clay Minerals 36 197210 10.1180/000985501750177933.Google Scholar
Reardon, E.J., (1990) An ion interaction model for the determination of chemical equilibrium in cement/water systems Cement and Concrete Research 20 175192 10.1016/0008-8846(90)90070-E.Google Scholar
Robin, M.B. Ishii, I. McLaren, R. and Hitchcock, A.P., (1988) Fluorination effects on the inner shell spectra of unsaturated molecules Journal of Electron Spectroscopy and Related Phenomena 47 5392 10.1016/0368-2048(88)85005-9.Google Scholar
Sakharov, B.A. Lindgreen, H. Salyn, A. and Drits, V.A., (1999) Determination of illite-smectite structures using multispecimen X-ray diffraction profile fitting Clays and Clays Minerals 47 555566 10.1346/CCMN.1999.0470502.Google Scholar
Spector, S. Jacobsen, C. and Tennant, D., (1997) Process optimization for production of sub-20 nm soft X-ray zone plates Journal of Vacuum Science and Technology B 15 28722876 10.1116/1.589747.Google Scholar
Taubald, H. Bauer, A. Schafer, T. Geckeis, H. Satir, M. and Kim, J.I., (2000) Experimental investigation of the effect of high-pH solutions on the Opalinus Shale and the Hammerschmiede Smectite Clay Minerals 35 515524 10.1180/000985500546981.Google Scholar
Taylor, H.F.W., (1992) Tobermorite, jennite, and cement gel Zeitschrift für Kristallographie 202 4150 10.1524/zkri.1992.202.1-2.41.Google Scholar
Turpault, M.P. and Trotignon, L., (1994) The dissolution of biotite single crystals in dilute HNO3 at 24°C: Evidence of an anisotropic corrosion process of micas in acidic solutions Geochimica et Cosmochimica Acta 58 27612775 10.1016/0016-7037(94)90112-0.Google Scholar
Velde, B. Suzuki, T. and Nicot, E., (1986) Pressure-temperature-composition of illite/smectite mixed-layer minerals: Niger delta mudstones and other examples Clays and Clay Minerals 34 435441 10.1346/CCMN.1986.0340410.Google Scholar
Viellard, P. and Rassineux, F., (1992) Thermodynamic and geochemical modelling of the alteration of two cement matrices Applied Geochemistry 1 125136 10.1016/S0883-2927(09)80068-1.Google Scholar
Winn, B. Ade, H. Buckley, C. Howells, M. Hulbert, S. Jacobsen, C. Kirz, J. McNulty, I. Miao, J. Oversluizen, T. Pogorelsky, I. and Wirick, S., (1996) X1A: second generation undulator beamlines serving soft x-ray spectromicroscopy experiments at the NSLS Reviews of Scientific Instruments 67 14 10.1063/1.1147466.Google Scholar
Wolery, T.J., (1983) EQ3NR a computer program for geochemical aqueous speciation-solubility calculations: User’s guide and documentation Livermore, CA, USA Lawrence Livermore National Laboratory UCRL-53414 202 pp.Google Scholar
Zhang, X. Ade, H. Jacobsen, C. Kirz, J. Lindaas, S. Williams, S. and Wirick, S., (1994) Micro-XANES: chemical contrast in the scanning transmission x-ray microscope Nuclear Instruments and Methods in Physics Research A 347 431435 10.1016/0168-9002(94)91922-4.Google Scholar