Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-03T06:29:43.380Z Has data issue: false hasContentIssue false

Enhanced Adsorption Of Humic Acid On Amino-Modified Bentonite

Published online by Cambridge University Press:  01 January 2024

Lei Jiang
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China Institute of Mineral Materials and Application, Southwest University of Science and Technology, Mianyang 621010, China School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
Hongjuan Sun*
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China Institute of Mineral Materials and Application, Southwest University of Science and Technology, Mianyang 621010, China
Tongjiang Peng
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China Institute of Mineral Materials and Application, Southwest University of Science and Technology, Mianyang 621010, China
Juan Du
Affiliation:
School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
Lingxi Xia
Affiliation:
School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China

Abstract

Humic acid (HA) can cause environmental pollution, due to which, its removal from aqueous solutions has become an increasingly important issue. Although bentonite has an affinity for HA, the adsorption capacity of raw bentonite is still poor. As a commonly used organic modifier, 3-aminopropyltriethoxyorganosilane (APTES) exhibits excellent flocculation capability for HA. Therefore, the objective of the present study was to investigate the effectiveness of the addition of 3-aminopropyltriethoxyorganosilane (APTES) to raw bentonite to increase the adsorption of HA from aqueous solution. The experimental results showed that, when the solid-to-liquid ratio was 1:1, the amino-modified bentonite exhibited the highest adsorption capacity (qmax = 272.23 mg g-1). The adsorption affinity of amino-modified bentonite was mainly determined by the number of amino groups loaded onto its surface. The adsorption of HA on amino-modified bentonite occurred through electrostatic interactions and hydrogen bonding. These findings demonstrate the excellent potential of amino-modified bentonite in effectively remediating HA pollution.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anirudhan, T. S., Suchithra, P. S., Rijith, S. Amine-modified polyacrylamide-bentonite composite for the adsorption of humic acid in aqueous solutions Colloids and Surfaces A-Physicochemical and Engineering Aspects 2008 326 147156Google Scholar
Bagherifam, S., Brown, T. C., Fellows, C. M., Naidu, R., Komarneni, S. Highly efficient removal of antimonite (Sb (III)) from aqueous solutions by organoclay and organozeolite: Kinetics and Isotherms Applied Clay Science 2021 203 106004 10.1016/j.clay.2021.106004CrossRefGoogle Scholar
Bertuoli, P. T., Piazza, D., Scienza, L. C., Zattera, A. J. Preparation and characterization of montmorillonite modified with 3-aminopropyltriethoxysilane Applied Clay Science 2014 87 4651 10.1016/j.clay.2013.11.020CrossRefGoogle Scholar
Bhattacharyya, R., Ray, S. K. Removal of congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol Chemical Engineering Journal 2015 260 269283 10.1016/j.cej.2014.08.030CrossRefGoogle Scholar
Bolto, B., Dixon, D., Eldridge, R. Ion exchange for the removal of natural organic matter Reactive and Functional Polymers 2004 60 171182 10.1016/j.reactfunctpolym.2004.02.021CrossRefGoogle Scholar
Chen, H., Koopal, L. K., Xiong, J., Avena, M., Tan, W. Mechanisms of soil humic acid adsorption onto montmorillonite and kaolinite Journal of Colloid and Interface Science 2017 504 457467 10.1016/j.jcis.2017.05.078CrossRefGoogle ScholarPubMed
Chen, H., Li, Q., Wang, M., Ji, D., Tan, W. XPS and two-dimensional FTIR correlation analysis on the binding characteristics of humic acid onto kaolinite surface Science of the Total Environment 2020 724 138154 10.1016/j.scitotenv.2020.138154CrossRefGoogle ScholarPubMed
Collado, S., Oulego, P., Suarez-Iglesias, O., Diaz, M. Biodegradation of dissolved humic substances by fungi Applied Microbiology and Biotechnology 2018 102 34973511 10.1007/s00253-018-8851-6CrossRefGoogle ScholarPubMed
Dehghani, M. H., Zarei, A., Mesdaghinia, A., Nabizadeh, R., Alimohammadi, M., Afsharnia, M., McKay, G. Production and application of a treated bentonite–chitosan composite for the efficient removal of humic acid from aqueous solution Chemical Engineering Research and Design 2018 140 102115 10.1016/j.cherd.2018.10.011CrossRefGoogle Scholar
Deng, S., Bai, R. Aminated polyacrylonitrile fibers for humic acid adsorption: behaviors and mechanisms Environmental Science & Technology 2003 37 57995805 10.1021/es034399dCrossRefGoogle ScholarPubMed
Deng, S., Bai, R. Adsorption and desorption of humic acid on aminated polyacrylonitrile fibers Journal of Colloid and Interface Science 2004 280 3643 10.1016/j.jcis.2004.07.007CrossRefGoogle ScholarPubMed
Deng, S., Bai, R. B. Aminated Polyacrylonitrile Fibers for Humic Acid Adsorption: Behaviors and Mechanisms Environmental Science & Technology 2003 37 57995805 10.1021/es034399dCrossRefGoogle ScholarPubMed
Doulia, D., Leodopoulos, C., Gimouhopoulos, K., Rigas, F. Adsorption of humic acid on acid-activated Greek bentonite Journal of Colloid and Interface Science 2009 340 131141 10.1016/j.jcis.2009.07.028CrossRefGoogle ScholarPubMed
Feng, Y., Hasegawa, Y., Suga, T., Nishide, H., Yang, L., Chen, G., Li, S. Tuning conformational H-bonding arrays in aromatic/alicyclic polythiourea toward high energy-storable dielectric material Macromolecules 2019 52 87818787 10.1021/acs.macromol.9b01785CrossRefGoogle Scholar
Freundlich, H. Über die adsorption in lösungen Zeitschrift für Physikalische Chemie 1907 57 385470 10.1515/zpch-1907-5723CrossRefGoogle Scholar
Ge, X., Zhang, Z., Yu, H., Zhang, B., Cho, U. R. Study on viscoelastic behaviors of bentonite/nitrile butadiene rubber nanocomposites compatibilized by different silane coupling agents Applied Clay Science 2018 157 274282 10.1016/j.clay.2018.03.006CrossRefGoogle Scholar
Glatstein, D. A., Francisca, F. M. Influence of pH and ionic strength on Cd, Cu and Pb removal from water by adsorption in Na-bentonite Applied Clay Science 2015 118 6167 10.1016/j.clay.2015.09.003CrossRefGoogle Scholar
Gupta, V. K., Gupta, M., Sharma, S. Process development for the removal of lead and chromium from aqueous solutions using red mud-an aluminium industry waste Water Research 2001 35 11251134 10.1016/S0043-1354(00)00389-4CrossRefGoogle ScholarPubMed
He, H., Duchet, J., Galy, J., Gerard, J-F Grafting of swelling clay materials with 3-aminopropyltriethoxysilane Journal of Colloid and Interface Science 2005 288 171176 10.1016/j.jcis.2005.02.092CrossRefGoogle ScholarPubMed
Ho, Y. S., McKay, G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents Process Safety and Environmental Protection 1998 76 332340 10.1205/095758298529696CrossRefGoogle Scholar
Ho, Y. S., McKay, G. Pseudo-second order model for sorption processes Process biochemistry 1999 34 451465 10.1016/S0032-9592(98)00112-5CrossRefGoogle Scholar
Hua, J. M. Adsorption of low-concentration arsenic from water by co-modified bentonite with manganese oxides and poly(dimethyldiallylammonium chloride) Journal of Environmental Chemical Engineering 2018 6 156168 10.1016/j.jece.2017.11.062CrossRefGoogle Scholar
Huskic, M., Zigon, M., Ivankovic, M. Comparison of the properties of clay polymer nanocomposites prepared by montmorillonite modified by silane and by quaternary ammonium salts Applied Clay Science 2013 85 109115 10.1016/j.clay.2013.09.004CrossRefGoogle Scholar
Jarvis, K. L., Majewski, P. Plasma polymerized allylamine coated quartz particles for humic acid removal Journal of Colloid and Interface Science 2012 380 150158 10.1016/j.jcis.2012.05.002CrossRefGoogle ScholarPubMed
Lan, T., Wu, P., Liu, Z., Stroet, M., Liao, J., Chai, Z., Mark, A. E., Liu, N., Wang, D. Understanding the Effect of pH on the Solubility and Aggregation Extent of Humic Acid in Solution by Combining Simulation and the Experiment Environmental Science & Technology 2022 56 917927 10.1021/acs.est.1c05938CrossRefGoogle ScholarPubMed
Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids Journal of the American Chemical Society 1916 38 22212295 10.1021/ja02268a002CrossRefGoogle Scholar
Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum Journal of the American Chemical Society 1918 40 13611403 10.1021/ja02242a004CrossRefGoogle Scholar
Li, S. X., He, M. X., Li, Z. J., Li, D. M., Pan, Z. B. Removal of humic acid from aqueous solution by magnetic multi-walled carbon nanotubes decorated with calcium Journal of Molecular Liquids 2017 230 520528 10.1016/j.molliq.2017.01.027CrossRefGoogle Scholar
Lowe, J., Hossain, M. M. Application of ultrafiltration membranes for removal of humic acid from drinking water Desalination 2008 218 343354 10.1016/j.desal.2007.02.030CrossRefGoogle Scholar
Majzik, A., Tombacz, E. Interaction between humic acid and montmorillonite in the presence of calcium ions I. Interfacial and aqueous phase equilibria: Adsorption and complexation Organic Geochemistry 2007 38 13191329 10.1016/j.orggeochem.2007.04.003CrossRefGoogle Scholar
Mekidiche, M., Khaldi, K., Nacer, A., Boudjema, S., Ameur, N., Lerari-Zinai, D., Bachari, K., Choukchou-Braham, A. Organometallic modified montmorillonite application in the wastewater purification: Pollutant photodegradation and antibacterial efficiencies Applied Surface Science 2021 569 151097 10.1016/j.apsusc.2021.151097Google Scholar
Mo, W., He, Q., Su, X., Ma, S., Feng, J., He, Z. Preparation and characterization of a granular bentonite composite adsorbent and its application for Pb2+ adsorption Applied Clay Science 2018 159 6873 10.1016/j.clay.2017.12.001CrossRefGoogle Scholar
Naderi, A., Delavar, M. A., Ghorbani, Y., Kaboudin, B., Hosseini, M. Modification of nano-clays with ionic liquids for the removal of Cd (II) ion from aqueous phase Applied Clay Science 2018 158 236245 10.1016/j.clay.2018.03.037CrossRefGoogle Scholar
Peng, X., Luan, Z., Chen, F., Tian, B., Jia, Z. Adsorption of humic acid onto pillared bentonite Desalination 2005 174 135143 10.1016/j.desal.2004.09.007CrossRefGoogle Scholar
Quan, X., Sun, Z., Xu, J., Liu, S., Han, Y., Xu, Y., Meng, H., Wu, J., Zhang, X. Construction of an aminated MIL-53(Al)-functionalized carbon nanotube for the efficient removal of bisphenol AF and metribuzin Inorganic Chemistry 2020 59 26672679 10.1021/acs.inorgchem.9b02841CrossRefGoogle ScholarPubMed
Saldaña-Robles, A., Saldaña-Robles, N., Saldaña-Robles, A. L., Damian-Ascencio, C., Rangel-Hernández, V. H., Guerra-Sanchez, R. Arsenic removal from aqueous solutions and the impact of humic and fulvic acids Journal of Cleaner Production 2017 159 425431 10.1016/j.jclepro.2017.05.074CrossRefGoogle Scholar
Salman, M., El-Eswed, B., Khalili, F. Adsorption of humic acid on bentonite Applied Clay Science 2007 38 5156 10.1016/j.clay.2007.02.011CrossRefGoogle Scholar
Shaker, A. M., Komy, Z. R., Heggy, SEM, El-Sayed, MEA Kinetic Study for Adsorption Humic Acid on Soil Minerals Journal of Physical Chemistry A 2012 116 1088910896 10.1021/jp3078826CrossRefGoogle ScholarPubMed
Sposito, G. Derivation of the Langmuir equation for ion exchange reactions in soils Soil Science Society of America Journal 1979 43 197198 10.2136/sssaj1979.03615995004300010039xCrossRefGoogle Scholar
Sudoh, R., Islam, M. S., Sazawa, K., Okazaki, T., Hata, N., Taguchi, S., Kuramitz, H. Removal of dissolved humic acid from water by coagulation method using polyaluminum chloride (PAC) with calcium carbonate as neutralizer and coagulant aid Journal of Environmental Chemical Engineering 2015 3 770774 10.1016/j.jece.2015.04.007CrossRefGoogle Scholar
Tan, X., Zhou, X., Hua, R., Zhang, Y. Technologies for the removal of humic acid from water: A short review of recent developments 2010 IEEE 15Google Scholar
Tao, Q., Xu, Z., Wang, J., Liu, F., Wan, H., Zheng, S. Adsorption of humic acid to aminopropyl functionalized SBA-15 Microporous and Mesoporous Materials 2010 131 177185 10.1016/j.micromeso.2009.12.018CrossRefGoogle Scholar
Wang, J., Li, H., Yue, D. Enhanced adsorption of humic/fulvic acids onto urea-derived graphitic carbon nitride Journal of Hazardous Materials 2022 424 127643 10.1016/j.jhazmat.2021.127643CrossRefGoogle ScholarPubMed
Wang, J., Liu, S., Tang, W. Enhanced adsorption of humic acid on APTES modified palygorskite: behavior and mechanism Desalination and Water Treatment 2017 79 313321 10.5004/dwt.2017.20818CrossRefGoogle Scholar
Wang, J., Yue, D., Cui, D., Zhang, L., Dong, X. Insights into adsorption of humic substances on graphitic carbon nitride Environmental Science & Technology 2021 55 79107919 10.1021/acs.est.0c07681CrossRefGoogle ScholarPubMed
Wang, L., Dionysiou, D. D., Lin, J., Huang, Y., Xie, X. Removal of humic acid and Cr(VI) from water using ZnO–30N-zeolite Chemosphere 2021 279 130491 10.1016/j.chemosphere.2021.130491CrossRefGoogle ScholarPubMed
Wang, R. X., Wen, T., Wu, X. L., Xu, A. W. Highly efficient removal of humic acid from aqueous solutions by Mg/Al layered double hydroxides-Fe3O4 nanocomposites RSC Advances 2014 4 2180221809 10.1039/c4ra02212bCrossRefGoogle Scholar
Xie, L., Lu, Q., Mao, X., Wang, J., Han, L., Hu, J., Lu, Q., Wang, Y., Zeng, H. Probing the intermolecular interaction mechanisms between humic acid and different substrates with implications for its adsorption and removal in water treatment Water Research 2020 176 115766 10.1016/j.watres.2020.115766CrossRefGoogle ScholarPubMed
Yan, L., Low, P., Roth, C. Swelling pressure of montmorillonite layers versus H-O-H bending frequency of the interlayer water Clays and Clay Minerals 1996 44 749756 10.1346/CCMN.1996.0440605CrossRefGoogle Scholar
Yan, L., Low, P. F., Roth, C. B. Enthalpy changes accompanying the collapse of montmorillonite layers and the penetration of electrolyte into interlayer space Journal of Colloid and Interface Science 1996 182 417424 10.1006/jcis.1996.0482CrossRefGoogle Scholar
Yan, L., Roth, C. B., Low, P. F. Changes in the Si− O vibrations of smectite layers accompanying the sorption of interlayer water Langmuir 1996 12 44214429 10.1021/la960119eCrossRefGoogle Scholar
Yan, L., Roth, C. B., Low, P. F. Effects of monovalent, exchangeable cations and electrolytes on the infrared vibrations of smectite layers and interlayer water Journal of Colloid and Interface Science 1996 184 663670 10.1006/jcis.1996.0664CrossRefGoogle ScholarPubMed
Yan, L., Stucki, J. W. Effects of Structural Fe Oxidation State on the Coupling of Interlayer Water and Structural Si−O Stretching Vibrations in Montmorillonite Langmuir 1999 15 46484657 10.1021/la9809022CrossRefGoogle Scholar
Yan, L., Stucki, J. W. Structural perturbations in the solid–water interface of redox transformed nontronite Journal of Colloid and Interface Science 2000 225 429439 10.1006/jcis.2000.6794CrossRefGoogle ScholarPubMed
Yang, H., Luo, B., Lei, S., Wang, Y., Sun, J., Zhou, Z., Zhang, Y., Xia, S. Enhanced humic acid degradation by Fe3O4/ultrasound-activated peroxymonosulfate : Synergy index, non-radical effect and mechanism Separation and Purification Technology 2021 264 118466 10.1016/j.seppur.2021.118466CrossRefGoogle Scholar
Zhang, J., Lu, W., Zhan, S., Qiu, J., Wang, X., Wu, Z., Li, H., Qiu, Z., Peng, H. Adsorption and mechanistic study for humic acid removal by magnetic biochar derived from forestry wastes functionalized with Mg/Al-LDH Separation and Purification Technology 2021 276 119296 10.1016/j.seppur.2021.119296CrossRefGoogle Scholar
Zhang, Y-J, Ou, J-L, Duan, Z-K, Xing, Z-J, Wang, Y. Adsorption of Cr(VI) on bamboo bark-based activated carbon in the absence and presence of humic acid Colloids and Surfaces A-Physicochemical and Engineering Aspects 2015 481 108116Google Scholar
Zhang, Y. B., Lu, M. M., Su, Z. J., Wang, J., Tu, Y. K., Chen, X. J., Cao, C. T., Gu, F. Q., Liu, S., & Jiang, T. (2019). Interfacial reaction between humic acid and Ca-Montmorillonite: Application in the preparation of a novel pellet binder. Applied Clay Science, 180, 105177.CrossRefGoogle Scholar
Zhao, L., Luo, F., Wasikiewicz, J. M., Mitomo, H., Nagasawa, N., Yagi, T., Tamada, M., Yoshii, F. Adsorption of humic acid from aqueous solution onto irradiation-crosslinked carboxymethylchitosan Bioresource Technology 2008 99 19111917 10.1016/j.biortech.2007.03.030CrossRefGoogle ScholarPubMed
Zhou, T., Huang, S., Niu, D. J., Su, L. H., Zhen, G. Y., Zhao, Y. C. Efficient Separation of Water-Soluble Humic Acid Using (3-Aminopropyl)triethoxysilane (APTES) for Carbon Resource Recovery from Wastewater ACS Sustainable Chemistry & Engineering 2018 6 59815989 10.1021/acssuschemeng.7b04507CrossRefGoogle Scholar
Zhou, T., Zhao, X., Wu, S., Su, L., Zhao, Y. Efficient capture of aqueous humic acid using a functionalized stereoscopic porous activated carbon based on poly(acrylic acid)/food-waste hydrogel Journal of Environmental Sciences 2019 77 104114 10.1016/j.jes.2018.06.019CrossRefGoogle ScholarPubMed