Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-22T08:51:43.769Z Has data issue: false hasContentIssue false

Electron Spin Resonance Studies of Iron Oxides Associated with the Surface of Kaolins

Published online by Cambridge University Press:  01 July 2024

B. R. Angel
Affiliation:
Department of Mathematical Sciences, Plymouth Polytechnic, Plymouth, Devon, England
W. E. J. Vincent
Affiliation:
Department of Mathematical Sciences, Plymouth Polytechnic, Plymouth, Devon, England

Abstract

The different types of iron oxide phases associated with the surfaces of two suites of kaolins from Georgia, U.S.A., and from the Southwest Peninsula of England, have been identified using electron spin resonance (ESR) spectroscopy combined with magnetic-filtration, thermal, and chemical treatments. It has been shown that the English kaolins are coated with a lepidocrocitelike phase, which is readily removed by de Endredy's method of deferrification, while the Georgia kaolins are coated with a hematite- or goethitelike phase, which is not removed by this treatment. Throughout the course of this study, the effects of the various physical and chemical treatments on the brightness values of the kaolins were examined.

Резюме

Резюме

Различные типы фаз окиси железа,приуроченные к поверхностям двух свит каолина,развитых в Джорджии,С.Ш.А.,и на Юго-западном полуострове Англии, были определены с помощью спектроскопического метода резонанса электронного спина/РЭС/в сочетании с магнитно-фильтрационной, тепловой и химической обработками. Было показано, что каолины из Англии покрыты фазой подобной ле-пидокрокиту, который легко удаляется методом деферризации де Ендреди,в то время как каолины из Джорджии покрыты фазами подобными гематиту или гетиту, которые не снимаются этой обработкой. В течение этих исследований были изучены эффекты разных физических и химических обработок на интенсивность осветления каолинов.

Kurzreferat

Kurzreferat

Die verschiedenen Arten von Eisenoxydphasen, verbunden mit der Oberfläche zweier verwandter Kaolins, von Georgia, USA und von der Süd-West Halbinsel Englands, wurden durch “electron spin resonance” (ESR),kombiniert mit magnetischer Filtration, thermischer und chemischer Behandlung, identifiziert. Es wurde gezeigt, daß die englischen Kaoline mit einer Lepi-dokrokit-artigen Phase bedeckt sind, die leicht mittels der de Endredy Methode des Eisenentfernens beScitigt werden kann, wohingegen die Georgia Kaoline mit einer Hematit-oder Goethit-artigen Phase überzogen sind, welche nicht durch diese Behandlung entfernt werden kann. Im Verlauf dieser Untersuchung, wurden die Effekte verschiedener physikalischer und chemischer Behandlungen auf die Glanz-Werte der Kaoline untersucht.

Résumé

Résumé

Les différentes espèces de phases d'oxide de fer associées avec les surfaces de 2 suites de kaolins de Géorgie, U.S.A. et de la Péninsule Sud-Ouest de l'Angleterre ont été identifiées utilisant la spectroscopie de spin (E S R) combinée avec des traitements thermiques, chimiques, et de filtration magnétique. Il a été démontré que les kaolins anglais sont recouverts d'une phase ressemblant à la lépidocrocite qui est facilement retirée par la méthode de déferrification de de Endredy, tandis que les kaolins de Géorgie sont recouverts d'une phase ressemblant à l'hématite ou à la goethite qui ne peut pas être retirée par ce traitement. Au cours de cette étude, les effets des traitements physiques et chimiques sur les valeurs de l’éclat des kaolins ont été examinés.

Type
Research Article
Copyright
Copyright © 1978, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, B. J. and Jenne, E. A. (1970) Free iron and manganese oxide content of reference clays: Soil Sci. 109, 163.CrossRefGoogle Scholar
Angel, B. R. and Hall, P. L. (1972) Electron spin resonance studies of kaolin: Proc. Int. Clay Conf., Madrid, pp. 4759.Google Scholar
Angel, B. R., Jones, J. P. E. and Hall, P. L. (1974) Electron spin resonance studies of doped synthetic kaolinite, I: Clay Miner. 10, 247.CrossRefGoogle Scholar
Angel, B. R., Richards, K. S. and Jones, J. P. E. (1975) The synthesis, morphology, and general properties of kaolinites specifically doped with metallic ions and defects generated by irradiation: Proc. Int. Clay Conf., Mexico City, pp. 297304. Applied Publishing Ltd., Wilmette, Illinois. 1976.Google Scholar
Chukrov, F. V., Zvyagin, B. B., Ermilova, L. P. and Gorshkov, A. I. (1973) New data on iron oxides in weathering zone: Proc. Int. Clay Conf., Madrid, pp. 333341.Google Scholar
Cotton, F. A. and Wilkinson, G. (1967) Advanced Inorganic Chemistry, 2nd edition: Interscience, New York.Google Scholar
de Endredy, A. S. (1963) Estimation of free iron oxides in soils and clays by a photolytic method: Clay Miner. Bull. 5, 209.CrossRefGoogle Scholar
Fischer, W. R. and Schwertmann, U. (1975) The formation of hematite from amorphous iron (III) hydroxide: Clays & Clay Minerals 23, 33.CrossRefGoogle Scholar
Gallez, A., Juno, A. S. R., Herbillon, A. J. and Moorman, F. R. (1975) Clay mineralogy of selected soils in Southern Nigeria: Soil Sci. Soc. Am. Proc. 39, 577.CrossRefGoogle Scholar
Greenland, D. J. (1975) Charge characteristics of some kaolinite-iron hydroxide complexes: Clay Miner. 10, 407.Google Scholar
Greenland, D. J. and Oades, J. M. (1968) Iron hydroxides and clay surfaces: Trans. 9th Int. Congr. Soil Sci. Adelaide 1, 657.Google Scholar
Griscom, D. L., Friebele, E. J. and Marguardt, C. L. (1973) Evidence for a ubiquitous, sub-microscopic “magnetite-like” constituent in the lunar soils: Proc. 4th Lunar Sci. Conf. Supplement 4, Geochim. Cosmochim. Acta 3, 2709.Google Scholar
Herbillon, A. J., Mestagh, M. M., Vielvoye, L. and Derouane, E. G. (1976) Iron in kaolinite with special reference to kaolinite from tropical soils: Clay Miner. 11, 201.CrossRefGoogle Scholar
Jones, J. P. E. (1974) Electron spin Resonance studies of selectively doped synthetic kaolins. Ph.D. Thesis, University of London.CrossRefGoogle Scholar
Jones, J. P. E., Angel, B. R. and Hall, P. L. (1974) Electron spin resonance studies of doped synthetic kaolinites, II: Clay Miner. 10, 257.CrossRefGoogle Scholar
Landa, E. R. and Gast, R. E. (1973) Evaluation of crystallinity in hydrated ferric oxides, Clays & Clay Minerals 21, 121.CrossRefGoogle Scholar
Lewis, R. R. and Seftle, F. E. (1966) The source of ferromagnetism in zircon, Am. Mineral. 51, 1467.Google Scholar
McNicol, B. D. and Pott, G. T. (1972) Studies of the deammoniation and dehydroxylation processes in NH4 faujasite and NH4 mordenite zeolites. The use of the ESR of framework substitued Fe3+ as a probe: J. Catal. 25, 223.CrossRefGoogle Scholar
Mehra, O. P. and Jackson, M. L. (1960) Iron oxide removal from soils and clays by a dithionite citrate system buffered with sodium bicarbonate: Clays & Clay Minerals 7, 317.Google Scholar
Parfitt, R. L., Russell, J. D. and Farmer, V. C. (1976) Confirmation of the structure of goethite by infra-red spectroscopy: J. Chem. Soc. Faraday Trans. 71, 1082.CrossRefGoogle Scholar
Russell, J. D., Paterson, E., Fraser, A. R. and Farmer, V. C. (1975) Adsorption of CO2 on goethite surfaces: J. Chem. Soc. Faraday Trans. 71, 1623.CrossRefGoogle Scholar
Sayin, M. and Jackson, M. L. (1975) Anatase and rutile determination in kaolinite deposits: Clays & Clay Minerals 23, 437.CrossRefGoogle Scholar
Schwertmann, U., Fischer, W. R. and Papendorf, H. (1968) The influence of organic compounds on the formation of iron oxides: Trans. 9th Int. Congr. Soil Sci. Adelaide 1, 645.Google Scholar
Schwertmann, U. and Taylor, R. M. (1972) The influence of silicate on the transformation of lepidocrocite to goethite: Clays & Clay Minerals 20, 151.CrossRefGoogle Scholar
Schwertmann, U. and Thalmann, H. (1976) The influence of [Fe(II)], [Si], and pH on the formation of lepidocrocite: Clay Miner. 11, 189.CrossRefGoogle Scholar
Sumner, M. E. (1963) Effect of iron oxides on positive and negative charges in clays and soils: Clay Miner. Bull. 5, 218.CrossRefGoogle Scholar
Taylor, R. M. and Schwertmann, U. (1974) Maghemite in soils and its origin, Parts I and II: Clay Miner. 10, 289 and 299.CrossRefGoogle Scholar
Tebble, R. S. and Crzik, D. J. (1969) Magnetic Materials: John Wiley, New York.Google Scholar
Towe, K. M. and Bradley, W. F. (1967) Mineralogical constitution of colloidal hydrous ferric oxides: J. Colloid Interface Sci. 24, 384.CrossRefGoogle Scholar
Tsay, F. D., Manatt, S. L., Live, D. H. and Chan, S. I. (1973a) Metallic Fe phases in Apollo 16 fines; their origin and characteristics by electron spin resonance studies, Proc. 4th Lunar Sci. Conf. 3, 2751.Google Scholar
Tsay, F. D., Manatt, S. L. and Chan, S. I. (1973b) Magnetic phases in lunar fines: Metallic iron or ferric oxides?: Geochim. Cosmochim. Acta 37, 1201.Google Scholar
Vincent, W. E. J. and Angel, B. R. (1978) Electron spin resonance studies of vanadium impurities in kaolinite: Clays & Clay Minerals, in press.Google Scholar
Vogel, A. I. (1969) Macro and Semi-Micro Qualitative Inorganic Analysis: Longmans, Green & Co. Ltd., London.Google Scholar
Weaver, C. E. (1968) Electron microprobe study of kaolin: Clays & Clay Minerals 16, 187.CrossRefGoogle Scholar
Weeks, R. A. (1973) Ferromagnetic phases of lunar fines and breccias. Electron magnetic resonance spectra of Apollo 16 samples: Proc. 4th Lunar Sci. Conf. 3, 2763.Google Scholar