Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-17T09:44:47.678Z Has data issue: false hasContentIssue false

Effects of Temperature, pH, and Iron/Clay and Liquid/Clay Ratios on Experimental Conversion of Dioctahedral Smectite to Berthierine, Chlorite, Vermiculite, or Saponite

Published online by Cambridge University Press:  01 January 2024

Regine Mosser-Ruck*
Affiliation:
G2R, Nancy-Université, CNRS, CREGU, Boulevard des Aiguillettes, B.P. 239, F-54506, Vandoeuvre-lès-Nancy, France
Michel Cathelineau
Affiliation:
G2R, Nancy-Université, CNRS, CREGU, Boulevard des Aiguillettes, B.P. 239, F-54506, Vandoeuvre-lès-Nancy, France
Damien Guillaume
Affiliation:
LMTG, UMR 5563 CNRS-UPS-IRD, Observatoire Midi-Pyrénées, 14 avenue Edouard Belin, 31400 Toulouse, France
Delphine Charpentier
Affiliation:
CNRS-Université de Franche-Comté/UMR 6249 Chrono-environnement, 16 route de Gray, 25065 Besançon, France
Davy Rousset
Affiliation:
G2R, Nancy-Université, CNRS, CREGU, Boulevard des Aiguillettes, B.P. 239, F-54506, Vandoeuvre-lès-Nancy, France
Odile Barres
Affiliation:
Laboratoire Environnement et Minéralurgie, CNRS UMR7569, 15 Avenue du Charmois, BP40, 54501 Vandoeuvre-lès-Nancy, France
Nicolas Michau
Affiliation:
ANDRA, Direction Scientifique/Service Matériaux, Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92298 Châtenay-Malabry, France
*
* E-mail address of corresponding author: regine.ruck@g2r.uhp-nancy.fr

Abstract

In deep geological repositories for high-level nuclear wastes, interactions between steel canisters and clay-rich materials may lead to mineralogical transformations with a loss of the confining properties of the clays. Experiments simulating the conversion of smectite to Fe-rich clay phases in contact with Fe metal have been carried out to evaluate such a possibility by taking into account the effects of a series of critical parameters, including temperature, pH, and Fe/clay (Fe/C) and liquid/clay (L/C) ratios. The mineralogical and chemical transformations observed in these experiments have been compared with data from the literature, and subsequently used to propose a conceptual model for the main mineralogical transformations which can be expected in clay formations surrounding high-level nuclear waste repositories. In the presence of Fe metal and under low oxygen fugacity (<-40) the main mineralogical sequences are as follows:

  1. (1) up to 150°C, under neutral pH, and L/C > 5: dioctahedral smectite (di-sm) → 7 Å Fe-rich phase (berthierine, odinite-cronstedtite) for large Fe/C ratios (>0.5), or di-sm → Fe-rich di-sm + Fe-rich trioctahedral smectite (tri-sm) for small Fe/C ratios (0.1)

  2. (2) up to 150°C, under alkaline pH (10–12), and L/C > 5: di-sm → Fe di-sm (±palygorskite) for a small Fe/C ratio (0.1)

  3. (3) at 300°C, Fe/C = 0.1, and L/C > 5: di-sm → Fe-rich saponite → trioctahedral chlorite + feldspar + zeolite (near-neutral pH); di-sm → Fe-rich vermiculite + mordenite (pH 10–12).

Low temperatures (<150°C) and large L/C and Fe/C ratios seem to favor the crystallization of the serpentine group minerals instead of Fe-rich trioctahedral smectites or chlorites, the latter being favored by higher temperatures. The role of L/C and Fe/C ratios and the competition between them at different temperatures is a crucial point in understanding the transformation of smectite in contact with Fe metal.

Type
Article
Copyright
Copyright © Clays and Clay Minerals 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, P. Jahren, J.S. Harstad, A.O. Nilsen, O. and Ramm, M., 2000 Formation of grain-coating chlorite in sandstones. Laboratory synthesized vs. natural occurrences Clay Minerals 35 261269 10.1180/000985500546639.CrossRefGoogle Scholar
Alt, J.C. Honnorez, J. Laverne, C. and Emmermann, R., 1986 Hydrothermal alteration of 1 km section through the upper oceanic crust, DSDP Hole 504B: Mineralogy, chemistry and evolution of seawater-basalt interaction Journal of Geophysical Research 91 1030910335 10.1029/JB091iB10p10309.CrossRefGoogle Scholar
Bailey, S.W., 1994 Hydrous Phyllosilicates Washington, D.C. Mineralogical Society of America.Google Scholar
Bettison-Varga, L. and Mackinnon, I.D.R., 1997 The role of randomly mixed-layered chlorite/smectite in the transformation of smectite to chlorite Clays and Clay Minerals 45 506516 10.1346/CCMN.1997.0450403.CrossRefGoogle Scholar
Bildstein, O. Trotignon, L. Perronnet, M. and Jullien, M., 2006 Modelling iron-clay interactions in deep geological disposal conditions Physics and Chemistry of the Earth 31 618625 10.1016/j.pce.2006.04.014.CrossRefGoogle Scholar
Buatier, M. Ouyang, K. and Sanchez, J.P., 1993 Iron in hydrothermal clays from the Galapagos spreading centre mounds: consequences for the clay transition mechanism Clay Minerals 28 641655 10.1180/claymin.1993.028.4.11.CrossRefGoogle Scholar
Cathelineau, M. and Izquierdo, G., 1988 Temperature-composition relationships of authigenic micaceous minerals in the Los Azufres geothermal system Contributions to Mineralogy and Petrology 100 418428 10.1007/BF00371372.CrossRefGoogle Scholar
Cathelineau, M. and Nieva, D., 1985 A chlorite solid solution geothermometer. The Los Azufres (Mexico) geothermal system Contributions to Mineralogy and Petrology 91 235244 10.1007/BF00413350.CrossRefGoogle Scholar
Cathelineau, M. Mosser-Ruck, R. Charpentier, D., 2001 Interactions fluides/argilites en conditions de stockage profond des déchets nucléaires. Intérêt du couplage expérimentation/modélisation dans la compréhension des mécanismes de transformation des argiles et la prédiction a long terme du comportement de la barrière argileuse Actes des Journées Scientifiques ANDRA Nancy, France EDP Sciences 305341.Google Scholar
Charpentier, D. Devineau, K. Mosser-Ruck, R. Cathelineau, M. and Villiéras, F., 2006 Bentonite-iron interactions under alkaline condition: an experimental approach Applied Clay Science 32 113 10.1016/j.clay.2006.01.006.CrossRefGoogle Scholar
Chermak, J.A., 1992 Low temperature experimental investigation of the effect of high pH NaOH solutions on the opalinus shale, Switzerland Clays and Clay Minerals 40 650658 10.1346/CCMN.1992.0400604.CrossRefGoogle Scholar
Devineau, K. Charpentier, D. Villiéras, F. Mosser-Ruck, R. Maddi, S. Barres, O. Razafitianamaharavo, A., 2005 MX80/iron interactions at 80, 150, and 300°C under alkaline conditions: influence of the mineralogical transformations on texture Proceedings of the International Meeting: Clays in Natural and Engineered Barriers for Radioactive Waste Confinement France Tours.Google Scholar
Garrels, R.M. and Christ, J.C., 1965 Solutions, minerals, and equilibria San Francisco, California, USA Freeman, Cooper.Google Scholar
Grauby, O. Petit, S. Decarreau, A. and Baronnet, A., 1993 The beidellite-saponite solid-solution: An experimental approach European Journal of Mineralogy 5 623635 10.1127/ejm/5/4/0623.CrossRefGoogle Scholar
Guillaume, D., 2002 Etude expérimentale du système fer-smectite en présence de solution à 80°C et 300°C .Google Scholar
Guillaume, D. Neaman, A. Cathelineau, M. Mosser-Ruck, R. Peiffert, C. Abdelmoula, M. Dubessy, J. Villieras, F. Baronnet, A. and Michau, N., 2003 Experimental synthesis of chlorite from smectite at 300°C in the presence of metallic Fe Clay Minerals 38 281302 10.1180/0009855033830096.CrossRefGoogle Scholar
Guillaume, D. Neaman, A. Cathelineau, M. Mosser-Ruck, R. Peiffert, C. Abdelmoula, M. Dubessy, J. Villiéras, F. and Michau, N., 2004 Experimental study of the transformation of smectite at 80°C and 300°C in the presence of Fe oxides Clay Minerals 39 1734 10.1180/0009855043910117.CrossRefGoogle Scholar
Gündogdu, M.N. Yalçin, H. Temel, A. and Clauer, N., 1996 Geological, mineralogical and geochemical characteristics of zeolite deposits associated with borates in the Bigadiç, Emet and Kirka Neogene lacustrine basins, Western Turkey Mineralium Deposita 31 492513 10.1007/BF00196130.CrossRefGoogle Scholar
Hillier, S. and Velde, B., 1992 Chlorite interstratified with a 7 Å mineral: an example from offshore Norway and possible implications for the interpretation of the composition of diagenetic chlorites Clay Minerals 27 475486 10.1180/claymin.1992.027.4.07.CrossRefGoogle Scholar
Idemitsu, K. Yano, S. Xiaobin, X. Inagaki, Y. and Arima, T., 2002 Diffusion behaviour of iron corrosion products in buffer materials Materials Research Society Symposium — Proceedings 713 113120 10.1557/PROC-713-JJ11.9.CrossRefGoogle Scholar
Iijima, A. and Matsumoto, R., 1982 Berthierine and chamosite in coal measures of Japan Clays and Clay Minerals 30 264274 10.1346/CCMN.1982.0300403.CrossRefGoogle Scholar
Inoue, A., Schultz, L.G. van Olphen, H. Mumpton, F.A., 1987 Conversion of smectite to chlorite by hydrothermal diagenetic alterations, Hokuroku Kuroko mineralization area, northeast Japan Proceedings of the International Clay Conference Bloomington, Indiana, USA The Clay Minerals Society 158164.Google Scholar
Inoue, A. and Utada, M., 1991 Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita Area, north Honshu, Japan American Mineralogist 76 628640.Google Scholar
Kluska, J.M. Fritz, B. and Clement, A., 2002 Predictions of the mineralogical transformations in a bentonite barrier surrounding an iron radioactive container International Meeting, Clays in Natural and Engineered Barriers for Radioactive Waste Confinement 153154.Google Scholar
Lantenois, S., 2003 Réactivité fer métal/smectites en milieu hydraté à 80°C .Google Scholar
Lantenois, S. Lanson, B. Muller, F. Bauer, A. Jullien, M. and Plançon, A., 2005 Experimental study of smectite interaction with metal Fe at low temperature: 1 - Smectite destabilization Clays and Clay Minerals 53 597612 10.1346/CCMN.2005.0530606.CrossRefGoogle Scholar
Lear, P.R. and Stucki, J W, 1989 Effects of iron oxidation state on the specific surface area of nontronite Clays and Clay Minerals 37 547552 10.1346/CCMN.1989.0370607.CrossRefGoogle Scholar
Montes, H.G. Fritz, B. Clement, A. and Michau, N., 2005 Modelling of transport and reaction in an engineered barrier for radioactive waste confinement Applied Clay Science 29 155171 10.1016/j.clay.2005.01.004.CrossRefGoogle Scholar
Pabalan, R.T., 1994 Thermodynamics of ion exchange between clinoptilolite and aqueous solutions of Na+/K+ and Na+/Ca2+ Geochimica et Cosmochimica Acta 58 21 45734590 10.1016/0016-7037(94)90192-9.CrossRefGoogle Scholar
Perronnet, M., 2004 Réactivité des matériaux argileux dans un contexte de corrosion métallique. Application au stockage des déchets radioactifs en site argileux .Google Scholar
Perronnet, M. Jullien, M. Villiéras, F. Raynal, J. Bonnin, D. and Bruno, G., 2008 Evidence of a critical content in Fe(0) on Foca7 bentonite reactivity at 80°C Applied Clay Science 38 187202 10.1016/j.clay.2007.03.002.CrossRefGoogle Scholar
Robinson, D. Schmidt, S.T.h. and de Santana Zamora, A., 2002 Reaction pathways and reaction progress for the smectite-to-chlorite transformation: evidence from hydro-thermally altered metabasites Journal of Metamorphic Geology 20 167174 10.1046/j.0263-4929.2001.00361.x.CrossRefGoogle Scholar
Saumagne, P. and Josien, M.L., 1962 Advances in Molecular Spectroscopy London Pergamon Press 1033 10.1016/B978-1-4832-1330-9.50015-7.CrossRefGoogle Scholar
Savage, D. Watson, C. Benbow, S. and Wilson, J., 2010 Modelling iron-bentonite interactions Applied Clay Science 47 9198 10.1016/j.clay.2008.03.011.CrossRefGoogle Scholar
Schiffman, P. and Fridleifsson, G.O., 1991 The smectite-chlorite transition in drillhole Nj-15, Nesjavellir geothermal field, Iceland: XRD, BSE, and Electron Microprobe Investigations Journal of Metamorphic Geology 9 679696 10.1111/j.1525-1314.1991.tb00558.x.CrossRefGoogle Scholar
Schiffman, P. and Staudigel, H., 1995 The smectite to chlorite transition in a fossil seamount hydrothermal system: the basement complex of La Palma, Canary Islands Journal of Metamorphic Geology 13 487498 10.1111/j.1525-1314.1995.tb00236.x.CrossRefGoogle Scholar
Schlegel, M.L. Bataillon, C. Benhamida, K. Blanc, C. Menut, D. and Lacour, J.L., 2008 Metal corrosion and argillite transformation at the water-saturated, high-temperature iron-clay interface: A microscopic-scale study Applied Geochemistry 23 26192633 10.1016/j.apgeochem.2008.05.019.CrossRefGoogle Scholar
Stucki, J.W. and Tessier, D., 1991 Effects of iron oxidation state on the texture and structural order of Na-nontronite Clays and Clay Minerals 39 137143 10.1346/CCMN.1991.0390204.CrossRefGoogle Scholar
Stucki, J.W. Golden, B.C. and Roth, C.B., 1984 Effects of reduction and reoxidation of structural iron on the surface charge and dissolution of dioctahedral smectites Clays and Clay Minerals 32 350356 10.1346/CCMN.1984.0320502.CrossRefGoogle Scholar
Stucki, J.W. Low, P.F. Roth, C.B. and Golden, B.C., 1984 Effects of oxidation state of octahedral iron on clay swelling Clays and Clay Minerals 32 357362 10.1346/CCMN.1984.0320503.CrossRefGoogle Scholar
Toppani, A. Robert, F. Libourel, G. de Donato, P. Barres, O. d’Hendecourt, L. and Ghanbaja, J., 2005 A ‘dry’ condensation origin for circumstellar carbonates Nature 437 11211124 10.1038/nature04128.CrossRefGoogle ScholarPubMed
Wilson, J. Ragnarsdottir, K.V. Savage, D. Cuadros, J. Cressey, G. Cressey, B. and Shibata, M., 2005 The effect of iron on bentonite stability: an investigation into reactions between native Fe, magnetite, montmorillonite and aqueous solutions .Google Scholar
Wilson, J. Cressey, G. Cressey, B. Cuadros, J. Ragnarsdottir, K.V. Savage, D. and Shibata, M., 2006 The effect of iron on montmorillonite stability. (II) Experimental investigation Geochimica et Cosmochimica Acta 70 323336 10.1016/j.gca.2005.09.023.CrossRefGoogle Scholar