Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T14:49:15.162Z Has data issue: false hasContentIssue false

Effects of Iron and Aluminium Oxides on the Colloidal and Surface Properties of Kaolin

Published online by Cambridge University Press:  28 February 2024

Manuel Arias
Affiliation:
Departamento de Edafoloxía e Química Agrícola Facultade de Farmacia, Univ. Santiago de Compostela 15706, Santiago, Spain
M. Teresa Barral
Affiliation:
Departamento de Edafoloxía e Química Agrícola Facultade de Farmacia, Univ. Santiago de Compostela 15706, Santiago, Spain
Francisco Diaz-Fierros
Affiliation:
Departamento de Edafoloxía e Química Agrícola Facultade de Farmacia, Univ. Santiago de Compostela 15706, Santiago, Spain

Abstract

The association between clay silicates, and iron and aluminium oxides has a major influence on the chemical and physical properties of soils. In this work the interaction of a kaolin substrate with iron and aluminium oxides and/or hydroxides obtained by basification of solutions of the metal ions was compared to that of quartz. Both precipitates were obtained in the presence of the substrates.

The aluminium precipitates had higher crystallinity, and thus led to smaller increases in specific surface area than those of iron, and were more effective modifiers of the surface electrical properties of the kaolin-oxide mixtures. At concentrations as low as 0.43% Al (g/100 g of substrate) the point of zero charge (PZC) of the components with variable charge was measurable, while Fe required 2.23% and gave lower PZCs than those of corresponding concentrations of Al. In both cases the PZCs shifted to higher pH as metal concentration was increased, as did the flocculation interval of colloidal suspensions of kaolin, which were close to the PZCs (where these were evaluated).

The Al and Fe oxides precipitated on quartz had higher crystallinities. Both metals increased the specific surface area to a similar extent, with an almost linear relationship to metal concentration. Samples containing ca. 6.5% Fe or Al had similar or slightly higher PZCs than corresponding kaolin samples.

The results were interpreted by assuming, in the case of kaolin, the union of the metal precipitate with the basal faces of the substrate, so decreasing the negative charge at this surface; and in the case of quartz, the formation of a hydroxide coating that neutralizes the negative charge on the silica surface. The difference between the results obtained for each metal was attributed to the different morphologies of their oxide precipitates.

Type
Research Article
Copyright
Copyright © 1995, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, P. R., and Benjamin, M. M. 1985. Effects of silicon on the crystallization and adsorption properties of ferric oxides. Environ. Sci. Technol. 19: 10481053.Google Scholar
Arduino, E., Barberis, E., and Boero, V. 1989. Iron oxides and particle aggregation in B horizons of some Italian soils. Geoderma 45: 319329.Google Scholar
Arias, M., and Barral, M. T. 1992a. Efecto comparado del Fe y del Al en la agregación de sustratos caoliníticos. Proc. III Congr. Nac. de la Ciencia del Suelo. Pamplona. 6368.Google Scholar
Arias, M., Barral, M. T., and Díaz-Fierros, F. 1992b. Hidróxidos de aluminio sintéticos y agregación en muestras de caolinita y cuarzo. Suelo y Planta 2: 395410.Google Scholar
Arias, M., Barral, M. T., and Díaz-Fierros, F. 1992c. Oxidos de hierro sintéticos y agregación en muestras de caolinita y cuarzo. Suelo y Planta 2: 187202.Google Scholar
Barral Silva, M. T., and Guitián Ojea, F. 1991. Iron oxide accumulations in Tertiary sediments on the Roupar Basin, Galicia, NW Spain. Catena 18: 3143.Google Scholar
Blackmore, A. V., 1973. Aggregation of clay by the products of iron (III) hydrolysis. Aust. J. Soil Res. 11: 7582.Google Scholar
Borggaard, O. K., 1985. Organic matter and silicon in relation to the crystallinity of soil iron oxides. Acta Agric. Scand. 35: 398406.Google Scholar
Bundy, W. M., and Murray, H. H. 1973. The effect of aluminum on the surface properties of kaolinite. Clays & Clay Miner. 21: 295302.Google Scholar
Chao, T. T., Harward, M. E., and Fang, S. C. 1964. Iron or aluminium coatings in relation to sulphate adsorption characteristics of soils. Soil Sci. Soc. Amer. Proc. 28: 632635.Google Scholar
Colombo, C., and Torrent, J. 1991. Relationships between aggregation and iron oxides in Terra Rossa from southern Italy. Catena 18: 5159.Google Scholar
Conde-Pumpido, R., 1986. Caolines de Galicia. Estudio de sus propiedades reológicas: Doctoral thesis. University of Santiago de Compostela, Spain.Google Scholar
Deshpande, T. L., Greenland, D. J., and Quirk, J. P. 1968. Changes in soil properties associated with the removal of iron and aluminium oxides. J. Soil Sci. 19: 108122.Google Scholar
El-Rayah, H. M. E., and Rowell, D. L. 1973. The influence of iron and aluminium hydroxides on the swelling of Namontmorillonite and the permeability of a Na-soil. J. Soil Sci. 24: 137144.Google Scholar
El-Swaify, S. A., 1976. Changes in the physical properties of soil clays due to precipitated aluminum and iron hydroxides: II. Colloidal interactions in the absence of drying. Soil Sci. Soc. Am. J. 40: 516520.Google Scholar
El-Swaify, S. A., and Emerson, W. W. 1975. Changes in the physical properties of soil clays due to precipitated aluminum and iron hydroxides: I. Swelling and aggregate stability after drying. Soil Sci. Soc. Amer. Proc. 39: 10561063.Google Scholar
Follett, E. A. C., 1965. The retention of amorphous, colloidal ‘ferric hydroxide’ by kaolinites. J. Soil Sci. 16: 334341.Google Scholar
Galán, E., and Martín, J. L. 1975. Caolines españoles. Geología, mineralogía y génesis. Parte VIII. Depósitos residuales y volcánicos. Bol. Soc. Esp. Ceram. Vid. 14: 351370.Google Scholar
Gillman, G. P., and Uehara, G. 1980. Charge characteristics of soils with variable and permanent charge minerals: II. Experimental. Soil Sci. Soc. Am. J. 44: 252255.Google Scholar
Goldberg, S., and Glaubig, R. A. 1987. Effect of saturating cation, pH and aluminum and iron oxides on the flocculation of kaolinite and montmorillonite. Clays & Clay Miner. 35: 220227.Google Scholar
Golden, D.C., and Dixon, J. B. 1985. Silicate and phosphate influence on kaolin-iron oxide interactions. Soil Sci. Soc. Am. J. 49: 15681576.Google Scholar
Greenland, D. J., 1975. Charge characteristics of some kaolinite-iron hydroxide complexes. Clay Miner. 10: 407416.Google Scholar
Greenland, D. J., and Oades, J. M. 1968. Iron hydroxides and clay surfaces. Trans. 9th Int. Congr. Soil Sci. (Adelaide) 1: 657668.Google Scholar
Greenland, D. J., Oades, J. M., and Sherwin, T. W. 1968. Electron microscope observations of iron oxides in some red soils. J. Soil Sci. 19: 123126.Google Scholar
Gregory, J., 1989. Fundamentals of flocculation. Critical Reviews in Environ. Control 19: 185230.Google Scholar
Heilman, M. D., Carter, D. L., and Gonzalez, C. L. 1965. The ethylene glycol monoethyl ether (EGME) technique for determining soil surface area. Soil Sci. 100: 409413.Google Scholar
Hsu, P. H., 1966. Formation of gibbsite from ageing hydroxy-aluminum solutions. Soil Sci. Soc. Amer. Proc. 30: 173176.Google Scholar
Hsu, P. H., 1989. Aluminum hydroxides and oxyhydroxides. In Minerals in Soil Environments. Dixon, J. B., and Weed, S. B., eds. Madison, Wisconsin: Soil Sci. Soc. Amer., 331378.Google Scholar
Hsu, P. H., and Bates, T. F. 1964. Fixation of hydroxy-aluminum polymers by vermiculite. Soil Sci. Soc. Amer. Proc. 28: 763769.Google Scholar
Jones, A. A., and Saleh, A. M. 1987. A study of the thickness of ferrihidrite coatings on kaolinite. Mineral. Mag. 51: 8792.Google Scholar
Jones, R. C., and Uehara, G. 1973. Amorphous coatings on mineral surfaces. Soil Sci. Soc. Amer. Proc. 37: 792798.Google Scholar
Kavanagh, B. V., Posner, A. M., and Quirk, J. P. 1975. Effect of polymers adsorption on the properties of the electrical double layer. Faraday Discuss. Chem. Soc. 59: 242249.Google Scholar
Mehra, O. P., and Jackson, M. L. 1960. Iron oxide removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate. Proc. 7th Nat. Conf. Clay Miner. 317327.Google Scholar
Oades, J. M., 1984. Interactions of polycations of aluminium and iron with clays. Clays & Clay Miner. 32: 4957.Google Scholar
Parks, G. A., 1965. The isoelectric points of solid oxides, solid hydroxides and aqueous hydroxy-complex systems. Chem. Rev. 65: 177198.Google Scholar
Rand, B., and Melton, I. E. 1977. Particle interactions in aqueous kaolinite suspensions. I. Effect of pH and electrolyte upon the mode of particle interaction in homoionic sodium kaolinite suspensions. J. Colloid Interface Sci. 60: 308320.Google Scholar
Rengasamy, P., and Oades, J. M. 1977. Interaction of monomelic and polymeric species of metal ions with clay surfaces. II. Changes in surface properties of clays after addition of iron (III). Aust. J. Soil Res. 15: 235242.Google Scholar
Robert, M., Veneau, G., and Abreu, M. M. Etudes microscopiques d'associations aluminium-argiles ou fer-argiles. In Micromorphologie des Sols-Soil Micromorphology. Proc. VII Int. Work. Meet. on Soil Micromorphology. Fedoroff, N., and Courty, M. A., 1987 eds. France: A.F.E.S. 467474.Google Scholar
Robert, M., Veneau, G., and Hervio, M. 1983. Influence des polycations du fer et de l'aluminium sur les propriétés des argiles. Science du Sol. 3–4: 235251.Google Scholar
Sakurai, K., Nakamura, Y., and Kyuma, K. 1990. Changes in zero point of charge (ZPC), phosphate retention, and specific surface area of some variable charge soils after several chemical treatments. Soil Sci. Plant Nutr. 37: 435444.Google Scholar
Sakurai, K., Ohdate, Y., and Kyuma, K. 1988. Comparison of salt titration and potentiometric titration methods for the determination of zero point charge (ZPC). Soil Sci. Plant Nutr. 34: 171182.Google Scholar
Sakurai, K., Teshina, A., and Kyuma, K. 1989. Changes in zero point of charge (ZPC), specific surface area (SSA), and cation exchange capacity (CEC) of kaolinite and montmorillonite, and strongly weathered soils caused by Fe and Al coatings. Soil Sci. Plant Nutr. 36(1): 7381.Google Scholar
Saleh, A. M., and Jones, A. A. 1984. The crystallinity and surface characteristics of synthetic ferrihydrite and its relationship to kaolinite surfaces. Clay Miner. 19: 745755.Google Scholar
Schahabi, S., and Schwertmann, U. 1970. Der Einfluss von synthetischen Eisenoxiden auf die aggregation Zweier Loessboedenhorizonte. Z. Pflanzenernäh. Düng. Bodenk. 125: 193204.Google Scholar
Scheidegger, A., Borkovec, M., and Sticher, H. 1993. Coating of silica sand with goethite: Preparation and analytical identification. Geoderma 58: 4365.Google Scholar
Schofield, R. K., and Samson, H. R. 1954. Flocculation of kaolinite due to the attraction of oppositively charged faces. Discuss. Faraday Soc. 18: 135145.Google Scholar
Schwertmann, U., 1964. Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammonium oxalatLösung. Z. Pflanzenernäh. Düng. Bodenk. 105: 194202.Google Scholar
Schwertmann, U., 1988. Goethite and hematite formation in the presence of clay minerals and gibbsite at 25°C. Soil Sci. Soc. Am. J. 52: 288291.Google Scholar
Schwertmann, U., Fitzpatrick, R. W., Taylor, R. M., and Lewis, D. G. 1979. The influence of aluminum on iron oxides. Part II. Preparation and properties of Al-substituted hematites. Clays & Clay Miner. 27: 105112.Google Scholar
Schwertmann, U., and Taylor, R. M. Iron oxides. In Minerals in Soil Environments. Dixon, J. B., and Weed, S. B., 1989 eds. Second Edition. Madison: Soil Sci. Soc. Amer. 379438.Google Scholar
Schwertmann, U., and Thalmann, H. 1976. The influence of [Fe(II)], [Si] and pH on the formation of lepidocrocite and ferrihydrite during oxidation of aqueous FeCl2 solutions. Clay Miner. 12: 189200.Google Scholar
Shanmuganathan, R. T., and Oades, J. M. 1982. Modification of soil physical properties by manipulating the net surface charge on colloids through addition of Fe(III) polycations. J. Soil Sci. 33: 451465.Google Scholar
Tschapek, M., Tcheichvili, L., and Wasowski, C. 1974. The point of zero charge (PZC) of kaolinite and SiO2 + A12O3 mixtures. Clay Miner. 10: 219229.Google Scholar
van Raij, B., and Peech, M. 1972. Electrochemical properties of some oxisols and alfisols of the tropics. Soil Sci. Soc. Amer. Proc. 36: 587593.Google Scholar
Wada, K., and Kubo, H. 1975. Precipitation of amorphous aluminosilicates from solutions containing monomeric silica and aluminium ions. J. Soil Sci. 26: 100111.Google Scholar
Weiss, A., and Russow, J. 1963. Über die lage der austauschbaren kationen bei kaolinit. Proc. Int. Clay Conf. (Stockholm) 1: 203213.Google Scholar
Yong, R. N., and Ohtsubo, M. 1987. Interparticle action and rheology of kaolinite-amorphous iron hydroxide (ferrihydrite) complexes. Applied Clay Sci. 2: 6381.Google Scholar