Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T09:14:43.259Z Has data issue: false hasContentIssue false

The Effect of Mechanical Treatment on the Crystal Structure and Thermal Behavior of Kaolinite

Published online by Cambridge University Press:  28 February 2024

Éva Kristóf
Affiliation:
Department of Silicate Chemistry and Technology, University of Veszprém, P.O. Box 158, H-8201 Veszprém, Hungary
A. Zoltán Juhász
Affiliation:
Department of Silicate Chemistry and Technology, University of Veszprém, P.O. Box 158, H-8201 Veszprém, Hungary
István Vassányi
Affiliation:
Department of Mineralogy, University of Veszprém, P.O. Box 158, H-8201 Veszpræm, Hungary

Abstract

The destruction of the crystal structure of kaolinite caused by mechanical forces was investigated by X-ray diffraction, thermal analysis, infrared spectroscopy, and specific surface area determination. Attention was also directed to the change of thermal reactions of milled kaolinite. Grinding experiments for 5 min, 10 min, and 1, 2, 4, 6, and 10 h were carried out in an AGO I planetary mill. After 1 h of grinding, the crystalline order of kaolin is destroyed; but the amorphization continues in the course of prolonged grinding. Grinding for 1 h produces a favorable state for forming mullite-type crystals after heating even at 1000°C.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aglietti, E. F., Porto Lopez, J. M. and Pereira, E., 1986 Mechanochemical effects in kaolinite grinding Int. J. Miner. Proc. 16 125146 10.1016/0301-7516(86)90079-7.CrossRefGoogle Scholar
Brindley, G. W. and Nakahira, M., 1959 The kaolinite-mullite reaction series J. Amer. Ceram. Soc. 42 311324 10.1111/j.1151-2916.1959.tb14314.x.CrossRefGoogle Scholar
Cameron, W. E., 1977 Composition and cell dimensions of mullite Amer. Ceram. Soc. Bull. 56 10031011.Google Scholar
Delhez, R., Keijser, T. H. and Mittemeijer, E. J., 1982 Determination of crystallite size and lattice distortions through X-ray diffraction Line Profile Analysis Fresenius Z. Anal. Chem. 312 116 10.1007/BF00482725.CrossRefGoogle Scholar
Grofcsik, J., 1961 Structure, Formation and Importance of Mullite Budapest Academic Press.Google Scholar
Hinckley, D. N., 1963 Variability in ‘crystallinity’ values among the kaolin deposits of the Coastal Plain of Georgia and South Carolina Clays & Clay Minerals Proc. 11th Nat. Conf. Oxford Pergamon Press.Google Scholar
Hlavay, J., Jonas, K., Elek, S. and Inczedy, J., 1977 Characterization of the particle size and the crystallinity of certain minerals by infrared spectrophotometry and other instrumental methods: I. Investigation of clay minerals Clays & Clay Minerals 25 451456 10.1346/CCMN.1977.0250611.CrossRefGoogle Scholar
Juhász, A. Z., (1974) Mechanochemische Aktivierung von Silikatmineralen durch Trocken-Feinmahlen: Aufbereitungs-Technik, 559562.Google Scholar
Juhász, A. Z., 1980 Mechano-chemical activation of kaolin minerals Acta Mineralogica-Petrographica 24 121145.Google Scholar
Juhász, A. Z. and Opoczky, L., 1990 Mechanical Activation of Minerals by Grinding: Pulverizing and Morphology of Particles Budapest Academic Press.Google Scholar
Juhász, A. Z. and Wojnärovits, I., 1984 The difference between thermal and mechanical dehidroxylation of kaolinite cfi/Ber. DKG 61 131139.Google Scholar
Kelley, W. P. and Jenney, H., 1936 The relation of crystal structure to base-exchange and its bearing on base-exchange in soils Soil. Sci. 4 367382 10.1097/00010694-193605000-00008.CrossRefGoogle Scholar
Klug, H. P. and Alexander, L. G., 1972 X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials London John Wiley & Sons.Google Scholar
Köhler, E., Hofmann, V., Scharrer, E. and Frühauf, K., 1960 Über den Einfluss der Mahlung auf Kaolin und Bentonit Ber. der deutsch. Keram. Ges. 37 493498.Google Scholar
Kotsis, I., (1980) Procedure of porcelain formation in model systems: Ph.D. thesis, University of Veszprem.Google Scholar
Laws, W. D. and Page, J. B., 1946 Changes produced in kaolinite by dry grinding Soil. Sci. 62 319322 10.1097/00010694-194610000-00006.CrossRefGoogle Scholar
McConnel, J. D. C., 1970 Electron optical study of the thermal decomposition of kaolinite Clays & Clay Minerals 8 279290 10.1180/claymin.1970.008.3.06.CrossRefGoogle Scholar
Miller, J. G. and Oulton, T. D., 1970 Prototropy in kaolinite during precussive grinding Clays & Clay Minerals 18 313323 10.1346/CCMN.1970.0180603.CrossRefGoogle Scholar
Schrader, R., 1970 Einfluss der Schwingmahlung auf die Eigenschaften von geschlämmten Kaolin Silikattechnik 21 196201.Google Scholar
Wiegmann, J., 1957 Queleues observations relatives aux modifications de la kaolinite en cours du broyage Bull. Soc. Franc. Céram. 36 49.Google Scholar