Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-23T16:14:32.216Z Has data issue: false hasContentIssue false

Early Stages of Volcanic Tuff Alteration in Hydrothermal Experiments: Formation of Mixed-Layer Illite-Smectite

Published online by Cambridge University Press:  01 January 2024

Sandra de la Fuente
Affiliation:
Estación Experimental del Zaidín, CSIC. Profesor Albareda, 1, 18008 Granada, Spain
Javier Cuadros*
Affiliation:
Estación Experimental del Zaidín, CSIC. Profesor Albareda, 1, 18008 Granada, Spain
José Linares
Affiliation:
Estación Experimental del Zaidín, CSIC. Profesor Albareda, 1, 18008 Granada, Spain
*
*E-mail address of corresponding author: javc@nhm.ac.uk

Abstract

Volcanic tuff from the Cabo de Gata region in Almería, southeastern Spain, was altered under hydrothermal conditions at different temperatures (60 to 180°C), reaction times (60 to 360 days), and reacting solutions (deionized water and NaCl and KCl solutions with Na/K ratios from 0.01 to 100, and a total salt concentration of 0.1 to 1 M).

X-ray diffraction (XRD) patterns of the reacted samples revealed a very weak, broad peak at ∼13 Å that migrated to 17 Å upon glycolation. Comparison between simulated (NEWMOD) and experimental XRD patterns indicated that the neoformed phase is a random mixed-layer illite-smectite (I-S) with 75% expandable layers. Fourier transform infrared (FTIR) spectroscopy showed that I-S formation was most extensive for high pH (8–9) solutions, corresponding to dilute solutions and, especially, to deionized water. Analytical electron microscopy (AEM) analyses of isolated I-S particles showed that most of them are smectite-rich I-S regardless of the experimental conditions, in agreement with XRD results. The I-S particles had a wide range of octahedral Mg contents. The pH and Na, K, Ca and Mg concentrations in the final solutions suggested cation (including H+) exchange as a major process in the alteration experiments. Analysis of aqueous activity diagrams (log aK/aHvs. log aSiO2) showed that some solution compositions are consistent and some are inconsistent with I-S formation. These results, combined with complementary electron microscopy analyses (de la Fuente et al., 2000a), are interpreted to be due to direct transformation of the glass into I-S in a process controlled by glass composition.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aja, S.U., (1991) Illite equilibria in solutions: III. A re-interpretation of the data of Sass et al. (1987) Geochimica et Cosmochimica Acta 55 34313435 10.1016/0016-7037(91)90501-U.Google Scholar
Aja, S.U. Rosenberg, P.E. and Kittrick, J.A., (1991) Illite equilibria in solutions: I. Phase relationships in the system K2O-MgO-Al2O3-SiO2-H2O between 25 and 250°C Geochimica et Cosmichimica Acta 55 13531364 10.1016/0016-7037(91)90313-T.Google Scholar
Alt, J. and Jiang, W.-T., (1991) Hydrothermally precipitated mixed-layer illite-smectite in recent massive sulfide deposits from the sea floor Geology 19 570573 10.1130/0091-7613(1991)019<0570:HPMLIS>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Amouric, M. and Olives, J., (1991) Illitization of smectite as seen by high-resolution transmission electron microscopy European Journal of Mineralogy 3 831835 10.1127/ejm/3/5/0831.CrossRefGoogle Scholar
Bellon, H., (1976) Séries magmatiques néogènes et quaternaires du pourtour de la Méditerrané occidentale, comparées dans leur cadre geochronométrique — implications geodinamiques France Université de Paris Sud 367 pp.Google Scholar
Bellon, H. Bordet, P. and Montenat, C., (1983) Chronologie du magmatisme néogene des Cordillères Bétiques (Espagne meridionale) Bulletin Societè Geologique de France 25 205217 10.2113/gssgfbull.S7-XXV.2.205.Google Scholar
Bradley, G.W. and Grim, R.E., (1951) High temperature thermal effects of clay and related materials American Mineralogist 36 182 201.Google Scholar
Brindley, G.W. Lemaitre, J. and Newman, A.C.D., (1987) Thermal, oxidation and reduction reactions of clay minerals Chemistry of Clays and Clay Minerals London Mineralogical Society 319 370.Google Scholar
Caballero, E. Reyes, E. Huertas, F. Linares, J. and Pozzuoli, A., (1991) Early-stage smectites from pyroclastic rocks of Almería (Spain) Chemical Geology 89 353358 10.1016/0009-2541(91)90024-L.Google Scholar
Casey, W.H. Bunker, B., Hochella, M.F. Jr. and White, A.F., (1990) Leaching of mineral and glass surfaces during dissolution Mineral-Water Interface Geochemistry Washington, D.C. Mineralogical Society of America 397426 10.1515/9781501509131-014 Reviews in Mineralogy, 23 .Google Scholar
Cerling, T.E. Brown, F.H. and Bowman, J.R., (1985) Low-temperature alteration of volcanic glass: hydration, Na, K, 18O and Ar mobility Chemical Geology 52 281 293.Google Scholar
Christidis, G. Scott, P. and Marcopoulos, T., (1995) Origin of the bentonite deposits of eastern Milos, Aegean, Greece: geological, mineralogical and geochemical evidence Clays and Clay Minerals 43 6377 10.1346/CCMN.1995.0430108.Google Scholar
Crovisier, J.L. Honnorez, J. and Fritz, B., (1992) Dissolution of subglacial volcanic glasses from Iceland: laboratory study and modelling Applied Geochemistry 1 SupplementaryIssue 5581 10.1016/S0883-2927(09)80064-4.Google Scholar
Cuadros, J. and Altaner, S.P., (1998) Characterization of mixed-layer illite-smectite from bentonites using microscopic, chemical, and X-ray methods: Constraints on the smectite-to-illite transformation mechanism American Mineralogist 83 762774 10.2138/am-1998-7-808.Google Scholar
Cuadros, J. and Linares, J., (1996) Experimental kinetic study of the smectite-to-illite transformation Geochimica et Cosmochimica Acta 60 439453 10.1016/0016-7037(95)00407-6.Google Scholar
de’ Gennaro, M. Langella, A. Cappelletti, P. and Colella, C., (1999) Hydrothermal conversion of trachytic glass to zeolite. 3. Monocationic model glasses Clays and Clay Minerals 47 348357 10.1346/CCMN.1999.0470311.Google Scholar
de la Fuente, S. Cuadros, J. Fiore, S. and Linares, J., (2000) Electron microscopy study of volcanic tuff alteration to illite-smectite under hydrothermal conditions Clays and Clay Minerals 48 339350 10.1346/CCMN.2000.0480305.Google Scholar
de la Fuente, S. Cuadros, J. and Linares, J., (2000) Quantification of mixed-layer illite-smectite in glass matrices by Fourier-transform infrared spectroscopy Clays and Clay Minerals 48 299303 10.1346/CCMN.2000.0480217.Google Scholar
Decher, A. Bechtel, A. Echle, W. Friedrich, G. and Hoernes, S., (1996) Stable isotope geochemistry of bentonites from the island of Milos (Greece) Chemical Geology 129 101113 10.1016/0009-2541(95)00147-6.Google Scholar
Di Battistini, G. Toscani, L. Iaccarino, S. and Villa, I.M., (1987) K/Ar ages and the geological setting of calc-alkaline volcanic rocks from Sierra de Gata, SE Spain Neues Jahrbuch für Mineralogie, Monatshefte 1987 8 337 383.Google Scholar
Drits, V.A. Salyn, A.L. and Šucha, V., (1996) Structural transformations of interstratified illite-smectites from Dolná Ves hydrothermal deposits: dynamics and mechanisms Clays and Clay Minerals 44 181190 10.1346/CCMN.1996.0440203.Google Scholar
Farmer, V.C. and Farmer, V.C., (1974) The Layer Silicates The Infrared Spectra of Minerals London Mineralogical Society 331363 10.1180/mono-4.15.Google Scholar
Fernández Soler, J.M., (1992) El volcanismo calco-alcalino de Cabo de Gata (Almería) Spain The University of Granada 243 pp.Google Scholar
Fiore, S. Huertas, F.J. Tazaki, K. Huertas, F. and Linares, J., (1999) A low temperature experimental alteration of a rhyolitic obsidian European Journal of Mineralogy 11 115 10.1127/ejm/11/3/0455.Google Scholar
Foster, M., (1960) Interpretation of the composition of trioctahedral micas US Geological Survey Professional Paper 354B 11 43.Google Scholar
Ghiara, M.R. Franco, E. Petti, C. Stanzione, D. and Valentino, G.M., (1993) Hydrothermal interaction between basaltic glass, deionized water and seawater Chemical Geology 104 125138 10.1016/0009-2541(93)90146-A.Google Scholar
Grauby, O. Petit, S. Decarreau, A. and Baronnet, A., (1993) The beidellite-saponite series: an experimental approach European Journal of Mineralogy 5 623635 10.1127/ejm/5/4/0623.Google Scholar
Harvey, C.C. and Browne, P.R., (1991) Mixed-layer clay geothermometry in the Wairakei geothermal field, New Zealand Clays and Clay Minerals 39 614621 10.1346/CCMN.1991.0390607.Google Scholar
Inoue, A. Watanabe, T. Kohoyama, N. and Brusewitz, A.M., (1990) Characterization of illitization of smectite in bentonite beds at Kinnekulle, Sweden Clays and Clay Minerals 38 241249 10.1346/CCMN.1990.0380302.Google Scholar
Inoue, A. Utada, M. and Wakita, K., (1992) Smectite-to-illite conversion in natural hydrothermal systems Applied Clay Science 7 131145 10.1016/0169-1317(92)90035-L.Google Scholar
Kawano, M. and Tomita, K., (1992) Formation of allophane and beidellite during hydrothermal alteration of volcanic glass below 200°C Clays and Clay Minerals 40 666674 10.1346/CCMN.1992.0400606.Google Scholar
Kawano, M. Tomita, K. and Kamino, Y., (1993) Formation of clay minerals during low temperature. Experimental alteration of obsidian Clays and Clay Minerals 41 431441 10.1346/CCMN.1993.0410404.Google Scholar
Keene, J.B. Clague, D.A. and Nishimori, R.K., (1976) Ex perimental hydrothermal alteration of tholeiitic basalt: resultant mineralogy and textures Journal of Sedimentary Petrology 46 647 653.Google Scholar
Kharaka, Y.K., Gunter, W.D., Aggarwal, P.K., Perkins, E.H. and De Braal, J.D. (1988) SOLMINEQ.88: A computer program for geochemical modelling of water-rock interaction. US Geological Survey Water-Resources Investigation Report 88–4227, 420 pp.Google Scholar
Lanson, B. and Champion, D., (1991) The I/S-to-illite reaction in the late stage diagenesis American Journal of Science 291 473506 10.2475/ajs.291.5.473.Google Scholar
Linares, J., (1985) The process of bentonite formation in Cabo de Gata, Almería, Spain Mineralogica et Petrographica Acta 29–A 17 33.Google Scholar
Mackenzie, R.C. and Mackenzie, R.C., (1970) Simple phyllosilicates based on gibbsite- and brucite-like sheets Differential Thermal Analysis, volume 1 London and New York Academic Press 504 514.Google Scholar
Magonthier, M.C. Petit, J.C. and Dran, J.C., (1992) Rhyolitic glasses as natural analogues of nuclear waste glasses: behaviour of an Icelandic glass upon natural aqueous corrosion Applied Geochemistry 1 SupplementaryIssue 8393 10.1016/S0883-2927(09)80065-6.Google Scholar
Nadeau, P.H. and Reynolds, R.C. Jr, (1981) Volcanic components in pelitic sediments Nature 294 7274 10.1038/294072a0.Google Scholar
Papin, A. Sergent, J. and Robert, J., (1997) Intersite OH-F distribution in an Al-rich synthetic phlogopite European Journal of Mineralogy 9 501508 10.1127/ejm/9/3/0501.Google Scholar
Reynolds, R.C. Jr, (1985) NEWMOD: A computer program for the calculation of one-dimensional patterns of mixed-layered clays 8 Brook Drive, Hanover, New Hampshire, USA R.C. Reynolds.Google Scholar
Shapiro, L. (1975) Rapid analysis of silicate, carbonate, and phosphate rocks. US Geological Survey Bulletin, 1401, 76 pp.Google Scholar
Shiraki, R. and Iiyama, T., (1990) Na-K ion exchange reaction between rhyolitic glass and (Na, K) Cl aqueous solution under hydrothermal conditions Geochimica et Cosmochimica Acta 54 29232931 10.1016/0016-7037(90)90110-7.Google Scholar
Šucha, V. Kraus, I. Gerthofferová, H. Peteš, J. and Sereková, M., (1993) Smectite to illite conversion in bentonites and shales of the east Slovak Basin Clay Minerals 28 243253 10.1180/claymin.1993.028.2.06.Google Scholar
Šucha, V. Elsass, F. Eberl, D.D. Kuchta, L. Madejová, J. Gates, W.P. and Komadel, P., (1998) Hydrothermal synthesis of ammonium illite American Mineralogist 83 5867 10.2138/am-1998-1-206.Google Scholar
Tazaki, K. Fyfe, W.S. and van der Gaast, S.J., (1989) Growth of clay minerals in natural and synthetic glasses Clays and Clay Minerals 37 348354 10.1346/CCMN.1989.0370408.Google Scholar
Thomassin, J.H. Boutonnat, F. Touray, J.C. and Baillif, P., (1989) Geochemical role of the water/rock ratio during the experimental alteration of a synthetic basaltic glass at 50°C. An XPS and STEM investigation European Journal of Mineralogy 1 261274 10.1127/ejm/1/2/0261.Google Scholar
Tomita, K. Yamane, H. and Kawano, M., (1993) Synthesis of smectite from volcanic glass at low temperature Clays and Clay Minerals 41 655661 10.1346/CCMN.1993.0410603.Google Scholar
Velde, B., Weaver, C.E. and Pollard, L.D., (1985) Smectites Clay Minerals. A Physico-Chemical Explanation of their Occurrence New York Elsevier 104 169.Google Scholar
Weaver, C.E. and Pollard, L.D., (1973) The Chemistry of Clay Minerals New York Elsevier Developments in Sedimentology, 15 .Google Scholar
Yates, D.M. and Rosenberg, P.E., (1996) Formation and stability of end member illite: I. Solution equilibration experiments at 100–250°C and Pv,soln Geochimica et Cosmochimica Acta 60 18731883 10.1016/0016-7037(96)00060-9.Google Scholar
Zevenbergen, C. Van Reeuwijk, L.P. Bradley, J.P. Bloemen, P. and Comans, R.N.J., (1996) Mechanism and conditions of clay formation during natural weathering of MSWI bottom ash Clays and Clay Minerals 44 546552 10.1346/CCMN.1996.0440414.Google Scholar