Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T15:33:01.070Z Has data issue: false hasContentIssue false

Dioctahedral Tosudite in Hydrothermally Altered Pliocene Rhyolitic Tuff, Neutla, Mexico

Published online by Cambridge University Press:  28 February 2024

Liberto de Pablo-Galan
Affiliation:
Instituto de Geología, Universidad Nacional Autonoma de México, Ciudad Universitaria, 04510 México, D.F.
M. L. Chávez-García
Affiliation:
Facultad de Química, Universidad Nacional A. de México, Ciudad Universitaria, 04510, México, D.F.

Abstract

Dioctahedral tosudite, a regular interstratification of dioctahedral chlorite-dioctahedral smectite, occurs associated with kaolin in the hydrothermal area of Delgado, Neutla, Mexico. Its composition corresponds to the formula:

$$\left( {S{I_{13.77}}A{L_{2.23}}} \right)A{L_8}{O_{40}}{\left( {OH} \right)_8} \cdot C{A_{0.39}}N{A_{0.03}}{K_{1.06}} \cdot \left( {A{L_{3.79}}F{E^{ + 3}}_{0.09}F{E^{ + 2}}_{0.06}M{G_{0.26}}} \right){\left( {OH} \right)_{12}}.$$
It forms as thin irregular flakes up to 5 µm in size. Adsorbed and cation hydration interlayer H2O is lost at 81°C and 184°C, dehydroxylation is intense at 496°C and weak at 656°C, with recrystallization at 970°C and 989°C. Infrared analysis shows OH-stretching at 3605 cm-1 assigned to the Al-OH-Al group and at 3628, 3500, and 3365 cm-1. Also, OH-bending occurs at 822 cm-1, deformation of the H2O molecule at 1630 cm-1, Si-O stretching at 1020 cm-1, and bending at 482 cm-1, displaced by Al substitution and increase of the Si-O distance. The characteristic basal spacing of 29.49 Å for the air-dry mineral is changed to 31.32 Å when solvated and to 23.23 Å upon heating; d060 = 1.496 Å. The interstratification is a regular 1:1 dioctahedral chlorite-dioctahedral smectite, R = 1, with coefficient of variability 0.73% for the air-dried mineral and 0.76% for the solvated one.

Type
Research Article
Copyright
Copyright © 1994, Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anceau, A., (1992) Sudoite in some Visean (Lower Carboniferous) K-bentonites from Belgium: Clay Miner. 27, 283292.CrossRefGoogle Scholar
Bailey, S. W., (1982) Nomenclature for regular interstratifications: Amer. Mineral. 67, 394398.Google Scholar
Bailey, S. W., (1988) Chlorites: Structure and crystal chemistry: in Hydrous Phyllosilicates, Bailey, S. W., and Ribbe, P. H., eds., Reviews in Mineralogy, Mineralogical Society of America, Washington, D.C., 347398.CrossRefGoogle Scholar
Bailey, S. W., and Brown, G. E., (1962) Chlorite polytypism: I. Regular and semi-random one-layer structures: Amer. Mineral. 47, 819850.Google Scholar
Bailey, S. W., and Lister, J. S., (1989) Structures, compositions, and X-ray diffraction identification of dioctahedral chlorites: Clays & Clay Minerals 37, 193202.CrossRefGoogle Scholar
Bailey, S. W., and Tyler, S. A., (1960) Clay minerals associated with the Lake Superior iron ores: Econ. Geol. 55, 150175.CrossRefGoogle Scholar
Bergaya, F., Brigati, M. F., and Fripiat, J. J., (1985) Contribution of infrared spectroscopy to the study of corrensite: Clays & Clay Minerals 33, 458462.CrossRefGoogle Scholar
Bettison, L. A., and Schiffman, P., (1988) Compositional and structural variations of phyllosilicates from the Point Sal ophiolite, California: Amer. Mineral. 73, 6276.Google Scholar
Brigatti, M. F., and Poppi, L., (1984) Crystal chemistry of corrensite: A review: Clays & Clay Minerals 32, 391399.CrossRefGoogle Scholar
Brown, G., Bourguignon, P., and Thorez, J., (1975) A lithium-bearing aluminium regular mixed layer montmorillonite-chlorite from Huy, Belgium: Clay Miner. 10, 135144.CrossRefGoogle Scholar
Brusewitz, A. M., (1986) Chemical and physical properties of Paleozoic potassium bentonites from Knneculle, Sweden: Clays & Clay Minerals 34, 442454.CrossRefGoogle Scholar
Cheng-Yi, L., and Bailey, S. W., (1985) Structural data for sudoite: Clays & Clay Minerals 33, 410414.Google Scholar
Comision de Estudios del Territorio Nacional (1973) Carta Geologica Celaya F-14-C-64, Escala 1: 50000: Secretaria de la Presidencia, Mexico, 1 p.Google Scholar
Consejo de Recursos Minerales (1982) Hojas restituidas del area de Delgado, Guanajuato: Consejo de Recursos Minerales, Mexico, 1 p.Google Scholar
Drits, V. A., and Lazarenko, E. K., (1967) The structural and mineralogical character of donbassites: Mineralog. Sbormik 21, 4048 (in Russian).Google Scholar
Eberl, D. D., (1978a) The reaction of montmorillonite to mixed-layer clays: Geochim. Cosmochim. Acta 42, 17.CrossRefGoogle Scholar
Eberl, Dennis D., (1978b) Reaction series for dioctahedral smectites: Clays & Clay Minerals 26, 327340.CrossRefGoogle Scholar
Eggleton, R. A., and Bailey, S. W., (1967) Structural aspects of dioctahedral chlorite: Amer. Mineral. 52, 673689.Google Scholar
Farmer, V. C., (1974) The Infrared Spectra of Minerals: Mineralogical Society, London, 539 pp.CrossRefGoogle Scholar
Frank-Kamenetsky, V. A., Logvinenko, N. V., and Drits, V. A., (1965) Tosudite — A new mineral forming the mixed layer phase in alushtite: Proc. Int. Clay Conf. Stockholm II, 181186.Google Scholar
Fransolet, A. M., and Bourguignon, P., (1975) Di/trioctahedral chlorite in quartz veins from the Ardenne, Belgium: Can. Mineral. 16, 365373.Google Scholar
Fripiat, J. J., Rouxhet, P., and Jacobs, H., (1965) Proton delocalization in micas: Amer. Mineral. 50, 19371958.Google Scholar
Furbish, W. J., (1975) Corrensite of deuteric origin: Amer. Mineral. 60, 928930.Google Scholar
Grim, Ralph 1962() Applied Clay Mineralogy: McGraw Hill, New York, p. 93.Google Scholar
Hayashi, H., and Oinuma, K., (1967) Si-O absorption band near 1000 cm–1 and OH-absorption bands of chlorite: Amer. Mineral. 52, 12061210.Google Scholar
Howard, J. J., and Roy, D. M., (1985) Development of layer charge and kinetics of experimental smectite alteration: Clays & Clay Minerals 33, 8188.CrossRefGoogle Scholar
Imai, N., and Watanabe, K., (1972) Tosudite-bearing clay associated with fluorspar deposits of the Igashima mine, Niagata Prefecture, northeastern Japan: Mining Geol. 22, 4366.Google Scholar
Inoue, A., (1983) K-fixation by clay minerals during hydrothermal treatment: Clays & Clay Minerals 31, 8191.CrossRefGoogle Scholar
Kopp, O. C., and Fallis, S. M., (1974) Corrensite in the Wellington Formation, Lyons, Kansas: Amer. Mineral. 59, 623624.Google Scholar
Kübler, B., (1973) La corrensite, indicateur possible de millieux de sédimentation et du degré de transformation d'un sédiment: Bull. Centre Oech. Pau SNAP 7, 543556.Google Scholar
Ledezma-Guerrero, O., (1960) Bosquejo Geologico de la Zona de Neutla, Guanajuato: Tesis, Facultad de Ingeniería, UNAM, 58 pp.Google Scholar
MacEwan, D. M. C., Ruiz-Amil, A., and Brown, G., (1961) Interstratified clay minerals: in The X-Ray Identification and Crystal Structures of Clay Minerals, Brown, G., ed., Mineralogical Society, London, 393445.Google Scholar
Merino, E., Harvey, C., and Murray, H. H., (1989) Aqueous chemical control of the tetrahedral aluminum content of quartz, halloysite, and other low-temperature silicates: Clays & Clay Minerals 37, 135142.CrossRefGoogle Scholar
Meunier, A., Proust, D., and Beaufort, D., (1992) Heterogeneous reactions of dioctahedral smectites in illite-smectite and kaolinite-smectite mixed-layers: Application to clay materials for engineered barriers: Appl. Geochem. Suppl. Issue 1, 143150.CrossRefGoogle Scholar
Morrison, S. J., and Parry, W. T., (1986) Dioctahedral corrensite from Permian Red Beds, Lisbon Valley, Utah: Clays & Clay Minerals 34, 613624.CrossRefGoogle Scholar
Nishiyama, T., Shimosa, S., Shimosaka, K., and Kanaoka, S., (1975) Lithium-bearing tosudite: Clays & Clay Minerals 23, 337342.CrossRefGoogle Scholar
Pacquet, A., (1968) Analcime et argiles diagénétiques dans les formations sédimentaires de la région d'Agades (Republic du Niger): Mem. Serv. Carte Geol. Als.-Lorr. 27, 221 pp.Google Scholar
Pollastro, R. M., (1985) Mineralogical and morphological evidence for the formation of illite at the expense of illite/smectite: Clays & Clay Minerals 33, 265274.CrossRefGoogle Scholar
Povarennykh, A. S., (1978) The use of infrared spectra for the determination of minerals: Amer. Mineral. 63, 956959.Google Scholar
Proust, D., Lechelle, J., Lajudie, A., and Meunier, A., (1990) Hydrothermal reactivity of mixed-layer kaolinite/smectite: experimental transformation of high-charge to low-charge smectite: Clays & Clay Minerals 38, 415425.CrossRefGoogle Scholar
Reyes-Serna, V., Acosta, C., Martinez, J. J., and Nava, J., (1959) Reconocimiento geologico de la zona alunitica de Romero, Guanajuato: Mineria y Metalurgia 9, 93123.Google Scholar
Reynolds, R. C., (1988) Mixed-layer chlorite minerals: in Hydrous Phyllosilicates, Bailey, S. W., and Ribbe, P. H., eds., Reviews in Mineralogy, Mineralogical Society of America, 601629.CrossRefGoogle Scholar
Serratosa, J. M., and Viñas, J. M., (1964) Infrared investigation of the OH bands in chlorites: Nature 202, 999.CrossRefGoogle Scholar
Shimoda, S., (1969) New data for tosudite: Clays & Clay Minerals 17, 179184.CrossRefGoogle Scholar
Shimoda, S., (1975) X-ray and infrared studies of sudoite and tosudite: Contributions to Clay Mineralogy in Honor of Prof. Toshio Sudo, 9296.Google Scholar
Shirozu, H., (1980) Cation distribution, sheet thickness, and O–OH space in trioctahedral chlorites: An X-ray and infrared study: Mineral. J. (Japan) 10, 1434.CrossRefGoogle Scholar
Shirozu, H., and Ishida, K., (1982) Infrared study of some 7A and 14A layer silicates by deuteration: Mineral. J. (Japan) 11, 161171.CrossRefGoogle Scholar
Środoń, Jan 1980() Synthesis of mixed-layer kaolinite/smectite: Clays & Clay Minerals 28, 419424.CrossRefGoogle Scholar
Środoń, J., Morgan, D. J., Eslinger, E. V., Eberl, D. D., and Karlinger, M. R., (1986) Chemistry of illite/smectite and end-member illite: Clays & Clay Minerals 34, 368378.CrossRefGoogle Scholar
Stubican, V., and Roy, R., (1961) Isomorphous substitution and infrared spectra of the layer lattice silicates: Amer. Mineral. 46, 3251.Google Scholar
Sudo, T., and Hayashi, H., (1956) Types of mixed-layer minerals from Japan: Clays & Clay Minerals 4, 389412.CrossRefGoogle Scholar
Sudo, T., and Kodama, H., (1957) An aluminous mixed-layer mineral of montmorillonite-chlorite: Z. Kristallogr. 109, 379387.CrossRefGoogle Scholar
Sudo, T., Takahashi, H., and Matsui, H., (1954) Long spacing of 30Å from fireclay: Nature 173, 161.CrossRefGoogle Scholar
Tuddenham, W. M., and Lyon, R. J. P., (1959) Relation of infrared spectra and chemical analysis for some chlorites and related minerals. Anal. Chem. 31, 377380.CrossRefGoogle Scholar
Velde, B., and Brusewitz, A. M., (1982) Metasomatic and non-metasomatic low-grade metamorphism of Ordovician meta-bentonites in Sweden: Geochim. Cosmochim. Acta 46, 447452.CrossRefGoogle Scholar
Vila, E., and Ruiz-Amil, A., (1988) Computer program for analyzing interstratified structures by Fourier transform methods: Powder Diffraction 3, 711.CrossRefGoogle Scholar