Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-21T15:20:38.109Z Has data issue: false hasContentIssue false

Determination of Hansen Solubility Parameters of Raw Muscovite

Published online by Cambridge University Press:  02 April 2024

Ming Weng
Affiliation:
College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
Xiuhua Wang*
Affiliation:
National & Local United Engineering Laboratory for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
*

Abstract

Muscovite has been used increasingly as a substrate in flexible electronics and fillers in high-performance nanocomposites. Muscovite-based interfacial interactions play a crucial rule in material fabrication. Hansen solubility parameters (HSPs) have proven useful in characterizing molecular interactions within/between condensed phases. The present study aimed to determine the HSPs of raw muscovite (RM) and to investigate solvent dispersion mechanisms of RM. To achieve this, the solubilities of RM in 17 solvents were evaluated by dispersion tests, and the HSPs of RM were calculated as the center of the optimal solubility rotated-ellipsoid in HSP space, which included all good solvents, had the smallest number of outliers, and had the smallest volume. The resulting dispersion, polar, and hydrogen bonding components of RM were 18.301, 2.366, and 3.727 MPa1/2, respectively. By considering the HSPs and Kamlet-Taft's solvatochromic parameters of solvents, we concluded that the low polarity of RM is due to hindered K+/H+ exchange on the RM surface, resulting from limited water/moisture contact. For solvent dispersion of RM, essential conditions include strong dispersion forces and weak polar forces, finely tuned to match the surface property of RM at a certain hydration level. The HSPs of RM determined from dispersion tests were restricted to predicting/characterizing RM-based interfacial phenomena in an environment with strictly controlled water/moisture content. The HSP calculation method proposed herein was applicable to any clay mineral.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Luyi Sun

References

Alin, J., Rubino, M., Auras, R. 2015 Effect of the solvent on the size of clay nanoparticles in solution as determined using an ultraviolet–visible (UV-Vis) spectroscopy methodology Applied Spectroscopy 69 6 671678, 2015ApSpe..69..671A,, 10.1366/14-07704, 25955412CrossRefGoogle ScholarPubMed
Arias, JJR, Rosa, J., Marques, MDFV 2019 Influence of phyllosilicate structure on performance of polypropylene nanocomposites prepared via in-situ polymerization Journal of Nanoscience and Nanotechnology 19 4 19081922,, 10.1166/jnn.2019.16339, 30486931CrossRefGoogle ScholarPubMed
Asgari, M., Sundararaj, U. 2018 Silane functionalization of sodium montmorillonite nanoclay: The effect of dispersing media on intercalation and chemical grafting Applied Clay Science 153 228238,, 10.1016/j.clay.2017.12.020CrossRefGoogle Scholar
Beran, A. 2002 Infrared spectroscopy of micas Reviews in Mineralogy and Geochemistry 46 1 351369, 2002RvMG...46..351B,, 10.2138/rmg.2002.46.07CrossRefGoogle Scholar
Bowers, G.M., Bish, D.L., Kirkpatrick, R.J. 2008 Cation exchange at the mineral-water interface: H3O+/K+ competition at the surface of nano-muscovite Langmuir 24 18 1024010244,, 10.1021/la8021112, 18715026CrossRefGoogle ScholarPubMed
Choi, Y.S., Ham, H.T., Chung, I.J. 2004 Effect of monomers on the basal spacing of sodium montmorillonite and the structures of polymer-clay nanocomposites Chemistry of Materials 16 13 25222529,, 10.1021/cm0348601CrossRefGoogle Scholar
Fali, A., Gamage, S., Howard, M., Folland, T.G., Mahadik, N.A., Tiwald, T., Bolotin, K., Caldwell, J.D., Abate, Y. 2021 Nanoscale spectroscopy of dielectric properties of mica ACS Photonics 8 1 175181,, 10.1021/acsphotonics.0c00951CrossRefGoogle Scholar
Hansen, C.M. 2007 Hansen solubility parameters: A user's handbook 2, CRC Press, 10.1201/9781420006834CrossRefGoogle Scholar
Hansen, C. M. (1967). The three dimensional solubility parameter and solvent diffusion coefficient, their importance in surface coating formulation. Doctoral dissertation, Danish Technical Press, Copenhagen.Google Scholar
Hildebrand, J.H. 1949 A critique of the theory of solubility of non-electrolytes Chemical Review 44 1 3745,, 10.1021/cr60137a003CrossRefGoogle ScholarPubMed
Ho, D.L., Glinka, C.J. 2003 Effects of solvent solubility parameters on organoclay dispersions Chemistry of Materials 15 6 13091312,, 10.1021/cm0217194CrossRefGoogle Scholar
Hojiyev, R., Ulcay, Y., Çelik, M.S. 2017 Development of a clay-polymer compatibility approach for nanocomposite applications Applied Clay Science 146 548556,, 10.1016/j.clay.2017.07.007CrossRefGoogle Scholar
Hunt, J.M., Turner, D.S. 1953 Determination of mineral constituents of rocks by infrared spectroscopy Analytical Chemistry 25 8 11691174,, 10.1021/ac60080a007CrossRefGoogle Scholar
Huth, M., Chen, C.W., Wagner, V. 2018 Measurement of Hansen solubility parameters for organophilic fluoromica and evaluation of potential solvents for exfoliation Applied Clay Science 155 120125,, 10.1016/j.clay.2018.01.012CrossRefGoogle Scholar
Kamlet, M.J., Taft, R.W. 1976 The solvatochromic compoarison method. 1. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities Journal of the American Chemical Society 98 2 377383,, 10.1021/ja00418a009CrossRefGoogle Scholar
Kamlet, M.J., Taft, R.W. 1976 The solvatochromic comparison method. 2. The α-scale of solvent hydrogen-bond donor (HBD) acidities Journal of the American Chemical Society 98 10 28862894, 10.1021/ja00426a036CrossRefGoogle Scholar
Kamlet, M.J., Abboud, J.L., Taft, R.W. 1977 The solvatochromic comparison method. 6. The π* scale of solvent polarities Journal of the American Chemical Society 99 18 60276038,, 10.1021/ja00460a031CrossRefGoogle Scholar
Li, L., Jiang, Z., Xu, J., Fang, T. 2014 Predicting poly(vinyl pyrrolidone)'s solubility parameter and systematic investigation of the parameters of electrospinning with response surface methodology Journal of Applied Polymer Science 131 11 40304,, 10.1002/app.40304CrossRefGoogle Scholar
Lu, J., Hong, C.K., Wool, R.P. 2004 Bio-based nanocomposites from functionalized plant oils and layered silicate Journal of Polymer Science: Part b: Polymer Physics 42 8 14411450, 2004JPoSB..42.1441L,, 10.1002/polb.20027CrossRefGoogle Scholar
Marcus, Y. 1993 The properties of organic liquids that are relevant to their use as solvating solvents Chemical Society Reviews 22 6 409416,, 10.1039/CS9932200409CrossRefGoogle Scholar
Mohammadi, H., Moghbeli, M.R. 2018 Organically modified-grafted mica (OMGM) nanoparticles for reinforcement of polypropylene Iranian Polymer Journal 27 2 125135,, 10.1007/s13726-017-0593-2CrossRefGoogle Scholar
Nahin, P.G. 1952 Infra-red analysis of clay and related minerals Clays and Clay Minerals 1 112118, 1952CCM.....1..112N, 10.1346/CCMN.1952.0010115Google Scholar
Pauling, L. 1930 The structure of the micas and related minerals Proceedings of the National Academy of Sciences of the United States of America 16 2 123129, 1930PNAS...16..123P,, 10.1073/pnas.16.2.123, 16587535, 1075954CrossRefGoogle ScholarPubMed
Plyusnina, I.I., Kapitonova, T.A. 1972 Infrared absorption spectra of micas in the on stretching region Journal of Applied Spectroscopy 16 3 351353, 1972JApSp..16..351P, 10.1007/BF00625559CrossRefGoogle Scholar
Qin, J.W., Wang, X., Jiang, Q.W., Cao, M.H. 2019 Optimizing dispersion, exfoliation, synthesis, and device fabrication of inorganic nanomaterials using Hansen solubility parameters ChemPhysChem 20 9 10691097,, 10.1002/cphc.201900110, 30900364CrossRefGoogle ScholarPubMed
Schroeder, P. A. (2002). Infrared spectroscopy in clay science. In CMS workshop lectures, Vol. 11, Teaching clay science, Rule, A. & Guggenheim, S. eds., The Clay Mineral Society, Aurora, USA.Google Scholar
Stubičan, V., Roy, R. 1961 Isomorphous substitution and infra-red spectra of the layer lattice silicates American Mineralogist 46 1–2 3251Google Scholar
Tateyama, H., Nishimura, S., Tsunematsu, K., Jinnai, K., Adachi, Y., Kimura, M. 1992 Synthesis of expandable fluorine mica from talc Clays and Clay Minerals 40 2 180185, 1992CCM....40..180T,, 10.1346/CCMN.1992.0400207CrossRefGoogle Scholar
Wang, J.W., Kalinichev, A.G., Kirkpatrick, R.J. 2009 Asymmetric Hydrogen bonding and orientational ordering of water at hydrophobic and hydrophilic surfaces: A comparison of water/vapor, water/talc, and water/mica interfaces Journal of Physical Chemistry C 113 25 1107711085,, 10.1021/jp9018316CrossRefGoogle Scholar
Wang, S.H., Liu, J.H., Pai, C.T., Chen, C.W., Chung, P.T., Chiang, AST, Chang, S.J. 2013 Hansen solubility parameter analysis on the dispersion of zirconia nanocrystals Journal of Colloid and Interface Science 407 140147, 2013JCIS..407..140W,, 10.1016/j.jcis.2013.07.001, 23906862CrossRefGoogle ScholarPubMed
Weng, M. 2016 Determination of the Hansen solubility parameters with a novel optimization method Journal of Applied Polymer Science 133 16 43328,, 10.1002/app.43328CrossRefGoogle Scholar
Weng, M., & Wang, X. H. (2022). Determining Hansen solubility parameters by a rotated ellipsoid-based method. Polymer Science, Series A: Polymer Physics, 64 (6), 591600.CrossRefGoogle Scholar
Wieneke, J.U., Kommoß, B., Gaer, O., Prykhodko, I., Ulbricht, M. 2012 Systematic investigation of dispersions of unmodified inorganic nanoparticles in organic solvents with focus on the Hansen solubility parameters Industrial & Engineering Chemistry Research 51 1 327334,, 10.1021/ie201973uCrossRefGoogle Scholar
Xue, X. P., Xu, Z. H., Pedruzzi, I., Ping, L., & Yu, J. G. (2018). Interaction between low molecular weight carboxylic acids and muscovite: Molecular dynamic simulation and experiment study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 559, 817.CrossRefGoogle Scholar
Yen, M., Bitla, Y., Chu, Y.H. 2019 van der Waals heteroepitaxy on muscovite Materials Chemistry and Physics 234 185195,, 10.1016/j.matchemphys.2019.05.053CrossRefGoogle Scholar
Zhang, D.Y., Li, C.C., Lin, N.Z., Xie, B.S., Chen, J. 2022 Mica-stabilized polyethylene glycol composite phase change materials for thermal energy storage International Journal of Minerals, Metallurgy and Materials 29 1 168176, 2022IJMMM..29..168Z,, 10.1007/s12613-021-2357-4CrossRefGoogle Scholar
Zhao, Z.N., Li, YHW, Lei, W., Hao, Q.L. 2022 Modified graphene/muscovite nanocomposite as a lubricant additive: Tribological performance and mechanism Lubricants 10 8 190,, 10.3390/lubricants10080190CrossRefGoogle Scholar
Zhong, G.K., Li, J.Y. 2020 Muscovite mica as platform for flexible electronics Journal of Materiomics 6 2 455457, 10.1016/j.jmat.2019.12.004CrossRefGoogle Scholar
Zhou, Z. Y., Fang, L. Z., Cao, Y. X., Wang, W. J., Wang, J. F., Yang, Y. Y., & Liu, Y. K. (2020). Determination of Hansen solubility parameters of halloysite nanotubes and prediction of its compatibility with polyethylene oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 601, 125031.CrossRefGoogle Scholar